Produto Educacional

Sequência Didática: Ensino por atividade para introdução das razões trigonométricas com auxílio do GeoGebra para turma 2º ano do ensino médio.

> Autor: Erick Cristian Tourão Oliveira Orientador: Miguel Tadayuki Koga

Sinop, 2024

Carta ao leitor

Olá, professor(a) de Matemática! Esse material, apresentado como Produto Educacional, é parte integrante de nossa pesquisa de Dissertação de Mestrado intitulada Estimulando o Engajamento e participação Estudantil nas Aulas de Matemática do Ensino Médio: Ensino por atividade para introdução de razões trigonométricas com auxilio software GeoGebra para turma do 2° ano do ensino médio, desenvolvida no Programa de Mestrado Profissional em Matemática em Rede Nacional – PROFMAT, na Universidade do Estado do Estado do Mato Grosso (UNEMAT).

Nosso Produto Educacional consiste em uma sequência didática para aulas de Matemática estruturada para o ensino introdutório das razões trigonométricas para a turma do 2° ano do ensino médio.

A sequência didática aqui apresentada consiste em 4 atividade para serem aplicadas em 4 dias diferentes com duas aulas no mínimo cada dia. Cada atividade tem um objeto de aprendizagem específico que o professor precisa construir no GeoGebra antes de ir para a sala de aula e o passo a passo da construção desse objeto de aprendizagem está no capítulo 3. Sobre as atividades, a primeira servirá como base para as próximas três, nos quais vão retratar as três principais razões trigonométricas. Uma quinta atividade, é sugerida pelo autor, como avaliação do processo, mas fica a cargo do professor regente a necessidade ou não dessa atividade.

A escolha de se trabalhar o ensino por atividade junto com GeoGebra foi a possibilidade de unir o útil ao agradável nas escolas públicas do Estado do Mato Grosso. A Secretaria de Educação do Estado, já disponibilizou mais de 48 mil Chromebook com internet para todas as escolas do estado para promover uma educação de qualidade com uma ferramenta que o aluno tem para descobrir e alcançar o seu potencial. Então como estávamos procurando algo para inovar e chamar atenção dos alunos nas aulas, escolhemos trabalhar com o GeoGebra nesses Chromebooks para explorarmos o máximo os recursos disponibilizados pelo governo do Estado.

Este produto tem como objetivo ajudar o professor em sala a chamar atenção dos alunos e fazê-los serem mais participativos nas aula de matemática, mas

também é claro, ajudar no processo introdutório do conteúdo de razões trigonométricas.

A seguir vamos conhecer mais do GeoGebra e suas ferramentas, como construir os objetos de aprendizagem e as atividades a serem realizadas na sala de aula.

1 Conhecendo um pouco o GeoGebra e suas ferramentas

Neste capítulo faremos um breve e resumido manual do GeoGebra e suas ferramentas utilizadas nesse trabalho. Caso o professor ou o aluno tenha interesse em estudar o software todo, basta acessá-lo de maneira online pelo site <u>www.geogebra.org/classic</u> ou baixa-lo em seu computador pelo o site <u>www.geogebra.org/download</u> e assim como o seu tutorial de instrução.

Ao baixar aplicativo do GeoGebra no seu computador e abri-lo, encontrará a seguinte imagem como tela principal e de entrada.

Perceba que existe 11 ícones na parte superiora esquerda, cada um deles ajuda a criar, mexer e alterar o objeto de aprendizagem. Abaixo temos duas janelas chamada de janela de Álgebra e janela de visualização e por último, na parte debaixo a esquerda temos uma terceira janela, chamada de Entrada.

1.1 Ícones/ferramentas:

Os 11 ícones que serão manuseadas nos objetos de aprendizagem encontra-se na Figura 2 a seguir. Elas podem ser configuradas na ordem que o usuário desejar, neste trabalho não iremos configurá-la.

Fonte: Autor

Não iremos explicar a funcionalidade de cada um desses ícones, porém no passo a passo que iremos disponibilizar para a criação do objeto de aprendizagem, iremos ter o cuidado de mostrar ícone por ícone e sua posição para ficar fácil o entendimento e localização do professor.

1.2 Janela de Álgebra:

Na janela de Álgebra se encontra os pontos, funções, retas, segmentos, enfim, tudo que se é manuseado na janela de entrada para construção do objeto de aprendizagem. A Figura 3 nos mostra a janela de Álgebra de um objeto de aprendizagem criado como exemplo.

Figura 3: Janela de Álgebra

Fonte: autor

Na janela de visualização é a parte onde se encontra o objeto construído e sua dinâmica é vista nesta sessão. A Figura 4 nos mostra um exemplo de objeto construído nesse janela de Álgebra

Figura 4: Janela de Visualização

1.4 Janela de Entrada

Na janela de Entrada é onde iremos colocar as equações, funções e operações que queremos representar no GeoGebra.

Para ficar melhor o entendimento, olhe a figura 5 e veja que colocamos uma equação da circunferência em "Entrada" e apareceu na janela de visualização uma circunferência de raio 2, correspondente a equação escrita

Fonte: Autor

1.5 Operações Aritméticas:

Para inserir números, coordenadas ou equações, devemos usar expressões aritméticas com parênteses. Veja a seguir algumas operações, descritas na Figura 6, que podemos usar no GeoGebra:

OPERAÇÃO	INSERIR
Adição	+
Subtração	-
Multiplicação ou Produto Escalar	*
Divisão	/
Exponenciação	^ ou 2
Parêntese	()
Abscissa	x ()
Ordenada	у()
Cosseno	cos ()
Seno	sen ()
Tangente	tan ()
Maior inteiro menor ou igual	floor ()
Menor inteiro maior ou igual	ceil ()

Figura 6: Tabela de operações

Fonte: Autor

1.6 Animação:

Para fazer variar um número ou um ângulo de forma contínua, pode se criar um controle deslizante, utilizando o ícone da Figura 7. Então, clique sobre o número ou ângulo e pressione as teclas – ou +. Mantendo uma destas teclas pressionada permite-lhe realizar animações ou através do botão direito do mouse, clique sobre o controle deslizante e selecione a opção "animar" que o objeto de aprendizagem começará a se movimentar sozinho.

Figura 7: ícone do controle deslizante

2 Controle Deslizante

Fonte: Autor

2 Construindo os objetos de Aprendizagem

Neste capítulo iremos disponibilizar o passo a passo para o professor criar o objeto de aprendizagem de cada atividade. É importante ressalta que, o professor precisa se familiarizar com as funcionalidades do GeoGebra, ditas no capítulo anterior, para poder criar o

objeto de aprendizagem antes das aulas e colocar lós em sua conta no site do GeoGebra, para que na hora da aula faça só o compartilhamento do código com os alunos

2.1 - Construção do objeto de aprendizagem 1: Arco e seu respectivo comprimento ao longo do eixo.

Passo 2: Em ferramentas selecionar na 10^ª opção **Controle Desizante** e depois clique na janela de visualização, criando o ângulo "n". Na opção "animação" selecione a opção "crescente".

Figura 8: Criando o controle deslizante

Controle Deslizante	
Número Ângulo	Nome
Intervalo Con	Aleatório (F9) trole Deslizante Animação
min: 0	max: 6.28 Incremento: 0.1
	Aplicar Cancelar

Fonte: Autor

Passo 3: Digite em na janela de entrada \underline{H} P=(cos(n), sin(n)).

	Passo	4:	Em	ferra	imentas	selecionar	na	6 ^a	opção
Arc	o Circular dad	los Centro	o e Dois Poi	ntos	e em segu	ida selecionar o	s pontos	<i>A, B</i> e <i>I</i>	P.

Passo 5: Mude a cor do arco d clicando nos três pontinho, depois configuração. Em seguida, vá na opção "cor" e mudar para vermelho e na opção estilo mudar espessura para 10.

Preferências Preferências Image: Constration of the second seco	
asso 6: Na janela de entrada	

ponto $P_1 = (n, 0)$, e em seguida criar o segmento na mesma caixa de entrada com o comando "Segmento[< *Ponto* >, < *Ponto* >]" com a informações "Segmento [A, P1]".

Passo 7: Mude a cor do segmento f, localizado no eixo x, clicando nos três pontinho, na janela de configuração e depois em configuração. Em seguida, selecione a opção "estilo" e mude a espessura para 10 e depois vá na opção cor e mude para vermelho. Continue na janela, selecione a opção "Basico" e em "exibir rotulo" selecione nome e valor.

Passo 8: Para finalizar, faça o desenho movimentar-se clicando em "play" na janela de configuração do ângulo "n". Em seguida pare a animação.

Passo 9: Crie o segmento \overline{AC} – "Segmento [A, C]", em seguida crie o ângulo o ângulo " $B\hat{A}C$ " clicando no ícone \boxed{a} e selecionando "ângulos".

Figura 9: Objeto 1 pronto

Fonte: Autor

2.2 Construção do objeto de aprendizagem 2: Razão Seno.

Criar o ponto

1° Passo: Em ferramentas crie uma circunferência de raio 1 na 6ª opção \bigcirc Círculo dados Centro e Um de seus Pontos. Depois coloque no centro A = (0,0), e pontoB = (1,0) dentro da janela de visualização.

2º Passo: Em ferramentas na 3^a opção selecione Reta definida por Dois Pontos, sendo um dos pontos o centro A(0,0) e C um ponto da circunferência. Em seguida colocar não visível na janela de álgebra.

3º Passo: Em ferramentas criar o segmento na 3ª opção Segmento definido por Dois Pontos . Nos pontos *A* e *C*. Em seguida na janela de álgebra, ir em configurações. Na opção básico, ir à opção exibir rótulo, ativar e mudar para valor.

4º Passo: Em ferramentas, selecionar a 4^a opção Reta Perpendicular e criar duas retas. Uma perpendicular ao ponto C e eixo y, e outra ao ponto C e eixo x, respectivamente.

5º Passo: Em ferramentas ir à 2ª opção

D de interseção da reta *h* com o eixo *y* e criar o ponto *E* de interseção da reta *i* e com o eixo *x*. Em seguida apagar as retas "*i*" e "*h*" na janela de álgebra.

6º Passo: Em ferramentas ir à 3ª opção **Segmento definido por Dois Pontos** e formar dois segmentos dos pontos D e C, e dos pontos E e C. Em seguida, na janela algébrica, em configurações do segmento \overline{CE} , selecionar a opção básico e em exibir rótulo mudar para valor.

7º Passo: Na janela algébrica, vá em configurações dos segmentos *j* e *k* que são \overline{DC} e \overline{EC} respectivamente, ir em propriedades na opção estilo e mudar a linha para tracejada.

8º Passo: Em ferramentas criar o segmento na 3ª opção Segmento definido por Dois Pontos e selecionar ponto A ao ponto *D*. Em seguida ir em configurações desse segmento, na opção estilo mudar espessura da linha para 10, na opção cor mudar para vermelho e acionar a opção exibir rótulo para valor.

9º Passo: Em ferramentas selecionar na 8ª opção Angulo em seguida selecionar os pontos *B*, *A* e *C* respectivamente.

10º Passo: Em ferramentas selecionar na 11ª opção Controle Deslizante, clicar na janela de visualização, em seguida selecionar a opção ângulo e ok.

11º Passo: na janela da Algébra, vá em configurações do ponto C e na opção básico na definição apagar o que estiver escrito e no lugar digitar Girar (B, β, A).

12º Passo: Na logo abaixo da janela algébrica, digitar y(D) em seguida aperte enter. Ir em configurações desse número na janela algébrica, na opção básico mudar o nome para *SEN*.

13º Passo: Vá na janela Algébrica e arraste para janela de visualização ângulo α e *sen* α . Em seguida vá em suas configurações, e em texto mude para grande e na cor para vermelho, em ambos.

14º Passo: Em seguida com o botão direito do mouse no controle deslizante em propriedades na opção mudar o nome para ângulo.

Figura 10: Objeto 2 pronto

2.3 Construção do objeto de aprendizagem 3: Razão cosseno.

Fonte: Autor

2º Passo: Em ferramentas na 3^a opção selecione Reta definida por Dois Pontos, sendo um dos pontos o centro A(0,0) e C um ponto da circunferência. Em seguida colocar não visível na janela de álgebra.

3º Passo: Em ferramentas criar o segmento na 3^a opção Nos pontos *A* e *C*. Em seguida clicar com o botão direito do mouse e ir em propriedades. Na opção básico, ir à opção exibir rótulo, ativar e mudar para valor.

4º Passo: Em ferramentas selecionar a 4ª opção duas retas. Uma perpendicular ao ponto C e eixo y, e outra ao ponto C e eixo x, respectivamente.

5º Passo: Em ferramentas selecionar na 2ª opção Interseção de Dois Objetos

Criar o ponto D de interseção da reta d com o eixo y e criar o ponto E de interseção da reta e com o eixo x. Em seguida apagar as retas "d" e "e" na janela de álgebra.

6º Passo: Em ferramentas selecionar na 3^a opção Segmento definido por Dois Pontos e formar dois segmentos dos pontos D e C, e dos pontos E e C.

7º Passo: Clicar com o botão direito do mouse nos segmentos f e g que são \overline{DC} e \overline{EC} respectivamente, ir em propriedades na opção estilo e mudar a linha para tracejada.

8º Passo: Em ferramentas 3^a opção criar o segmento através do ícone **Segmento definido por Dois Pontos** e selecionar do ponto *A* ao ponto *E*. Em seguida ir em propriedades

desse segmento, na opção estilo mudar espessura da linha para 4, na opção cor mudar para azul e acionar a opção exibir rótulo para valor.

9º Passo: Em ferramentas selecionar na 8^a opção Angulo em seguida selecionar os pontos *B*, *A* e *C* respectivamente.

10º Passo: Em ferramentas selecionar na 11^a opção **Controle Deslizante**, clicar em um ponto da janela de visualização, em seguida selecionar a opção ângulo e aplicar.

11º Passo: Selecionar com o botão direito do mouse propriedades do ponto C e na opção básico na definição apagar o que estiver escrito e no lugar digitar Girar $[B, \beta, A]$.

12º Passo: Na Entrada: digitar x(E) em seguida aperte enter. Ir em propriedades desse número clicando com o botão direito do mouse na janela de álgebra, na opção básico mudar o nome para *COS*.

13º Passo: Em ferramentas ir na 10ª opção **ABC Inserir Texto** e no lugar de editar colocar $cossen(\alpha) = COS$. Novamente o mesmo procedimento e em editar digitar $\alpha = \alpha$. Em propriedades do texto criado mudar tamanho para grande e cor para azul.

14º Passo: Em controle deslizante mudar nome para Ângulo.

Fonte: Autor

2.4 Construção do Objeto de aprendizagem 4: Razão Tangente.

1º Passo: Em ferramentas crie uma circunferência de raio 1 na 6ª opção

Círculo dados Centro e Um de seus Pontos

. Depois coloque no centro A = (0,0), e ponto

B = (1,0) dentro da janela de visualização.

۰

2º Passo: Em ferramentas na 3^a opção selecione **2º Passo:** Em ferramentas na 3^a opção selecione **2º Passo:**, sendo um dos pontos o centro A(0,0) e C um ponto da circunferência. Em seguida colocar não visível na janela de álgebra.

3º Passo: Em ferramentas criar o segmento na 3ª opção Segmento definido por Dois Pontos Nos pontos *A* e *C*.

4º Passo: Em ferramentas criar na 4^a opção ao ponto C e eixo x.

5° **Passo:** Em ferramentas selecionar a 2^a opção \square intereção do por objeto do po

6º Passo: Em ferramentas selecionar na 3ª opção Segmento definido por Dois Pontos e criar o segmento que vai do ponto A ao ponto D. Em seguida ir em propriedades desse segmento, na opção estilo mudar espessura da linha para 4, na opção cor mudar para azul e tirar a opção exibir rótulo.

7º Passo: Em ferramentas selecionar na 3^a opção (1000) e criar o segmento que vai do ponto *E* ao ponto *C*. Em seguida ir em propriedades desse segmento, na opção estilo mudar espessura da linha para 4, na opção cor mudar para vermelho e tirar a opção exibir rótulo.

8º Passo: Na janela de álgebra clicar na reta "a" e fazer ela aparecer na janela de visualização. Ir em ferramentas na opção retas paralelas selecionar o ponto *B* e o eixo *y*.

9º Passo: Em ferramentas selecionar na 2^a opção **1**, selecionar a reta "*a*" e "*h*", formando o ponto *E*. Logo em seguida ocultar a reta *h* na janela de álgebra.

10° Passo: Em ferramentas selecionar na 3ª opção Segmento definido por Dois Pontos e criar o segmento de reta entre os pontos $B \in E$. Logo em seguida ocultar a reta "a" na janela de álgebra.

Reta definida por Dois Pontos

Interseção de Dois Objetos

Segmento definido por Dois Pontos

Interseção de Dois Objetos

11º Passo: Clicar com o botão direito do mouse no segmento i que é o que vai do ponto *B* ao *E*, ir em propriedades, tirar a opção exibir rótulo. Na opção estilo mudar a espessura para 4 e na opção cor mudar para cinza.

12º Passo: Em ferramentas selecionar na 8^a opção Angulo em seguida selecionar os pontos *B*, *A* e *C* respectivamente.

13º Passo: Em ferramentas selecionar na 11ª opção Controle Deslizante, clicar na janela de visualização, em seguida selecionar a opção ângulo e aplicar.

14º Passo: Selecionar com o botão direito do mouse propriedades do ponto C e na opção básico na definição apagar o que estiver escrito e no lugar digitar "girar $[B, \beta, A]$ ".

15° Passo: Digitar na Entrada: y(E). Em seguida clicar com o botão direito do mouse no número criado e em propriedades mudar o nome para TG. Digitar na caixa de entrada y(C). Em seguida clicar com o botão direito do mouse no número criado e em propriedades mudar o nome para SEN. Digitar na caixa de entrada x(D). Em seguida clicar com o botão direito do mouse no número criado e em propriedades mudar o nome para SEN. Digitar na caixa de entrada x(D). Em seguida clicar com o botão direito do mouse no número criado e em propriedades mudar o nome para COS.

16º Passo: Em ferramentas selecionar na 3^a opção Segmento definido por Dois Pontos e criar o segmento que vai do ponto A até o ponto E.

17º Passo: Em ferramentas selecionar na 10ª opção **ABC** Inserir Texto e no lugar de editar colocar $TG(\alpha) = TG$. Novamente em inserir texto digitar $SEN(\alpha) = SEN$ e novamente repetindo o processo digitar $COS(\alpha) = COS$. Novamente o mesmo procedimento e em editar digitar $\alpha = \alpha$, lembrando que TG, SEN, COS e α vão estar na opção objetos.

18° Passo: Clicando com o botão direito do mouse em cada texto criado, em propriedades na opção texto mudar cada um no formato grande, no texto $TG(\alpha) = TG$ mudar a cor para cinza, no texto $SEN(\alpha) = SEN$ mudar a cor para vermelho, no texto $COS(\alpha) = COS$ mudar a cor para azul e no texto $\alpha = \alpha$ mudar a cor para verde.

19º Passo: Com o botão direito do mouse em controle deslizante em propriedades mudar o nome na opção básico para Ângulo e em seguida selecionar a opção animar clicando novamente com o botão direito do mouse no controle deslizante.

Fonte: Autor

3 As Atividades

Neste capítulo iremos conhecer cada uma das quatro atividades, seus objetivo, seus exercício e sugestões de como aplicá-las.

3.1 Atividade 1: Ciclo Trigonométrico

Essa primeira atividade não iremos focar nos conceitos matemáticos em si, pois os conceitos de ângulo, arco e transformação de graus para radiano e vice e versa, será feita no 3° bimestre. Então essa primeira atividade tem como principal objetivo explicar e fazer o aluno entender como funcionará o processo de manipulação do objeto de aprendizagem para a resolução dos exercício propostos e cada atividade. Então é importante que o professor deixe isso bem claro para os alunos nesse primeiro momento, que ele comece a resolver as questões com os alunos para que eles possam entender o processo e deixem os finalizar as exercícios para que eles comecem a pegar o ritmo. A seguir, veja atividade 1, exercício por exercício.

Atividade 1: Conhecendo o Ciclo trigonométrico

Exercício1: Analisando o objeto de aprendizagem, complete a tabela Ângulo Comprimento do segmento f Comprimento do arco d

30°	
46°	
60°	
90	

Analise as informações das tabelas e tire as suas conclusões

Para entendermos o radiano vamos fazer a seguinte atividade envolvendo animação gráfica:

Crie o controle deslizante v em seguida entre com o valor da constante $\pi = 3.1418$, comando de entrada, e depois disto crie a variável radiano, fazendo "*radiano* = π / v ". Compare desta variável com o comprimento do seguimento *f*, representado pela letra "*d*", e a partir desta comparação preencha a tabela a seguir.

Ângulo	Comprimento do arco d	V	Pi/v	Radianos
30°	0.52	6	0,52	Pi/6
36°		5		
45°	0.79	4	0,79	Pi/4
60°		3		

Exercício 2: Analisando o objeto de aprendizagem, complete a tabela

Analise as informações das tabelas e tire as suas conclusões

Formalização do conteúdo

Exercício 3: Analisando o objeto de aprendizagem e a tabela do exercício 2, complete a tabela abaixo.

Ângulo	Radianos
30°	π/6
45°	π /4
135°	
150°	
180°	Π

3.1.2 – Considerações importante

Caro leitor, é imprescindível que se compreenda o processo antes de aplicar cada atividade. Almejamos que o aluno seja o protagonista da sua própria aprendizagem, devendo ser instigado ao máximo, mas cuidado, não deixe chegar ao ponto de ele desistir da atividade por achar difícil e perder o interesse na mesma. Lembre-se, nosso objetivo aqui é fazê-lo participar mais ativamente da aula. Caso o aluno se sinta pressionado e incapaz, ele pode desistir, impedindo-nos de alcançar nosso objetivo.

No final do exercício 1, tem espaço para ele colocar o que o entendeu e aprendeu, no primeiro momento ele vai completar a tabela manualmente sem analisar de fato. Então ensine-o analisar o primeiro exercício e estigue bastante ele no segundo, sem esquecer que essa atividade é para ele aprender o processo e não os conceitos. Ele precisa entender e saber dizer o que aprender e você estará em sala para auxilia ló.

Outra atividade importe que precisamos dar é uma atividade diagnostica ou uma aula sobre área e comprimento de circunferência para que eles tenham base para fazer tal atividade já que esse conteúdo só será visto no 3° bimestre. É importante também uma revisão sobre resolução de equação do 1° grau, apesar dos alunos estarem no 2° ano do ensino médio, muitos passaram por dificuldade no ensino fundamental e não aprenderam de fato como resolver uma equação.

3.2 Atividade 2: Conhecendo a razão Seno

A atividade 2 foi desenvolvida com o objetivo principal de proporcionar condições para os alunos compreenderem como se realiza o cálculo da razão seno, entender seno é a razão ou a relação entre cateto oposto e hipotenusa, através da manipulação do objeto de aprendizagem 2, um círculo trigonométrico com a barra deslizante para definir o ângulo desejado. Veja a seguir a Atividade 2:

Atividade 2: Aprendendo a Razão seno

Sugestão ao professor: No desenvolver do exercício, espere o aluno determinar a razão, se porém, ele não conseguir descobrir como calcular o valor do seno, sugira ele testar algumas razões entre valores.

Exercício 1: Movimente o objeto de aprendizagem 2, complete a tabela. No final faça o que se pede:

Ângulo	Comprimento	do	Comprimento d	do	Valor do sen(α)
	segmento EC		segmento AC		
30°					
45°					
60°					
90°					

Analise as informações da tabela e tire as suas conclusões de como encontrar o valor do seno.

Formalização do conteúdo.

Exercício 2: Analisando a animação, no intervalo de $[0, 2\pi]$, complete a tabela em relação ao comportamento de *sen* α , se cresce ou descrece e qual seu valor nos determinados ângulos.

α	0	\rightarrow	$\pi/2$	\rightarrow	π	\rightarrow	3 π/2	\rightarrow	2 π
Sen α									

Analise as informações da tabela e tire as suas conclusões de como se comporta o valor do seno em determinados pontos do arco trigonométrico

Sugestão ao professor: Ao término desse exercício, sugerir ao aluno que faça uma animação do ciclo trigonométrico e analisar os quadrantes em que o seno é positivo e negativo.

Exercício 3: Verifique o sinal do seno nos quadrantes:

Quadrante	Sinal do seno
1º	
20	
30	
4°	

Exercício 4: Usando a razão cosseno para encontrar o valor desconhecido

Orientação: Manipulando o objeto de aprendizagem 2, complete com o valor do $SEN(\alpha)$ e encontre o valor de x, usando os conhecimentos adquiridos no exercício 1:

Ângulo(α)	SEN(α)	Medida	do	Medida do segmento	Valor de X
		segmento	AC	EC (cateto oposto) do	
		(hipotenusa)	do	triângulo	
		triângulo			
30°		Х		2	
45°		$\sqrt{2}$		Х	

60°	Х	3	
35°	4	Х	

Rascunho:

Atividade 5: Usando os conceitos e conhecimento adquiridos no exercício 1 e 4, resolver problemas contextualizados a seguir:

1) Um avião levanta voo sob um ângulo constante de 20º. Após percorrer 2 000 metros em linha reta, qual será a altura atingida pelo avião, aproximadamente?

2) Um avião decola, percorrendo uma trajetória retilínea, formando com o solo, um ângulo de 30º (suponha que a região sobrevoada pelo avião seja plana). Depois de percorrer 1 000 metros, qual a altura atingida pelo avião?

3.2.1 – Considerações importante

Nesta atividade é de extrema importância que os alunos tenham domínio do conceito de razão para conseguir resolver o exercício 1 e 4, e de como se resolve uma equação para resolver os exercício 4 e 5. Caso eles não tenham ou essa base matemática deles forem fracas, é preciso fazer uma revisão de tais conteúdo para que eles possam desenvolver a atividade 2 com sucesso e sem contratempo.

Sobre atividade lembre-se, o aluno é agente ativo do seu conhecimento, provoqueo ao máximo para que ele consiga chegar no conceito matemático que você deseja, mas tome cuidado para não espantar ele e fazer ele perde o interesse na atividade.

3.3 Atividade 3: Conhecendo a razão Cosseno

A atividade 3 foi desenvolvida com o objetivo de desenvolver o conceito da razão Cosseno. Por isso, a atividade 3 é bem similar com atividade 2, só irá mudar basicamente o conceito da razão seno para cosseno. Veja a seguir a Atividade 3:

Atividade 3: Aprendendo a Razão Cosseno

Sugestão ao professor: No desenvolver do exercício, espere o aluno determinar a razão, se, porém, ele não conseguir, faça-o lembrar de como encontrou a razão seno na atividade anterior.

Exercício 1: Movimente o objeto de aprendizagem 3, complete a tabela. No final faça o que se pede:

Ângulo	Comprimento segmento AE	do	Comprimento o segmento AC	do	Valor do Cos(α)
30°					
45°					
60°					
90°					

Analise as informações da tabela e tire as suas conclusões de como encontrar o valor do cosseno

Formalização do conteúdo

Exercício 2: Analise a animação, no intervalo de $[0, 2\pi]$, complete a tabela em relação ao comportamento de Cos α , se cresce ou decresce e qual seu valor nos determinados ângulos.

Α	0	\rightarrow	π/2	\rightarrow	π	\rightarrow	3 π/2	\rightarrow	2 π
---	---	---------------	-----	---------------	---	---------------	-------	---------------	-----

|--|

Analise as informações da tabela e tire as suas conclusões de como se comporta o valor do seno em determinados pontos do arco trigonométrico

Sugestão ao professor: Ao término desse exercício, sugerir ao aluno que faça uma animação do ciclo trigonométrico e analisar os quadrantes em que o seno é positivo e negativo.

Exercício 3: Estudo do sinal do seno.

Orientação: Verifique o sinal do seno nos quadrantes:

Quadrante	Sinal do seno
1°	
2°	
3°	
4°	

Exercício 4: Usando a razão cosseno para encontrar o valor desconhecido

Orientação: Manipulando o objeto de aprendizagem 2, complete com o valor do COS (α) e encontre o valor de x, usando os conhecimentos adquiridos no exercício 1:

Ângulo(α)	COS (α)	Medida segmento (hipotenusa) triângulo	do AC do	Medida do segmento AE (cateto adjacente) do triângulo	Valor de X
30°		Х		2	
45°		$\sqrt{2}$		Х	
60°		Х		3	

35°	4	Х	

Rascunho:

Atividade 5: Usando os conceitos e conhecimento adquiridos no exercício 1 e 4, resolver problemas contextualizados a seguir:

1) Um terreno possui o formato de um retângulo cuja base mede 8 cm, sabendo que o ângulo formado entre a base e a diagonal é de 30°, qual o valor que mais se aproxima da diagonal? (Use $\sqrt{3} = 1,7$)

3.3.1 – Considerações importante

Nesta atividade, sempre relembre os alunos de como fizeram a atividade na aula anterior, que o padrão e o mesmo, vai so mudar o conceito da razão seno para cosseno.

Tome cuidado professor com intervalo de dias de uma atividade para outra. Para você, talvez, seja fácil lembrar a atividade anterior, mas se atividade 3 acontecer muitos dias depois da atividade 2, bem provável que os alunos esqueçam de como se faz cada exercício e você terá que lembrá-los de como fazer, claro, sem esquece que você tem que estigar o aluno a chegar na resposta e não dar a resposta para eles.

3.4 Atividade 4: Conhecendo a razão Tangente

A atividade 4 foi desenvolvida com o mesmo objetivo das duas atividades anterior, entretanto, falando sobre a Razão Tangente. Por isso, a atividade 4 é bem similar com atividade 3, com uma pequena diferença no exercício 1, mas com mesmo intuito de encontrar como calcular o valor da razão, que nesta atividade é a razão tangente. Veja a seguir a Atividade 4:

Atividade 4: Aprendendo a Razão Tangente

Sugestão ao professor: No desenvolver do exercício, espere o aluno determinar a razão, se ele não conseguir, faça-o lembrar de como encontrou a razão seno e cosseno nas atividades anteriores.

Exercício 1: Movimente o objeto de aprendizagem 4, complete a tabela. No final faça o que se pede:

Ângulo(α)	Comp	rimento	Comp	orimento	Comprimento	Comprimento
	do	segmento	do	segmento	do segmento	do segmento
	AD		DC		AB	BE [tg(α)]
30°						
45°						
60°						
90°						

Usando uma calculadora, analise as informações da tabela e tire as suas conclusões de como encontrar o valor da Tangente

Formalização do conteúdo

Exercício 2: Crescimento e decrescimento do $Tg \alpha$.

Orientação: Analisando a animação, no intervalo de $[0, 2\pi]$, complete a tabela em relação ao comportamento de $Tg \alpha$, se cresce ou decresce e qual seu valor nos determinados ângulos.

A	0	\rightarrow	π/2	\rightarrow	П	\rightarrow	$3 \pi/2$	\rightarrow	2 π
Tang α									

Analise as informações da tabela e tire as suas conclusões de como se comporta o valor do seno em determinados pontos do arco trigonométrico

Sugestão ao professor: Ao término desse exercício, sugerir ao aluno que faça uma animação do ciclo trigonométrico e analisar os quadrantes em que a tangente é positiva, negativa ou não existe.

Exercício 3: Estudo do sinal do Tangente.

Orientação: Verifique o sinal do Tangente nos quadrantes:

Quadrante	Sinal do seno
10	
2º	
30	
4º	

Exercício 4: Usando a razão Tangente para encontrar o valor desconhecido

Orientação: Manipulando o objeto de aprendizagem 4, complete com o valor do $TG(\alpha)$ e encontre o valor de x, usando os conhecimentos adquiridos no exercício 1:

Ângulo(α)	$TG(\alpha)$	Medida segmento (sen α)	do ĀĒ	Medida segmento (cos α)	do <u>EC</u>	Valor de X
30°		Х		2		
45°		$\sqrt{2}$		Х		
60°		X		3		
35°		4		Х		

Atividade 5: Usando os conceitos e conhecimento adquiridos no exercício 1 e 4, resolver problemas contextualizados a seguir:

De um ponto A, um agrimensor enxerga o topo T de um morro, conforme um ângulo de 45°. Ao se aproximar 50 metros do morro, ele passa a ver o topo T conforme um ângulo de 60°. Determine a altura do morro.

3.4.1 – Considerações importante

Caro professor, nesta atividade você precisa ter os mesmos cuidados das atividades anteriores. Muitos alunos irão chegar nessa atividade sabendo mais ou menos o que tem que fazer, mas a maioria vai não vai lembrar, por diversos motivos, que pode ser a falta de interesse, a memória fraca do aluno e até mesma a diferença alta de dias de uma atividade para outra. Lembre-se o objetivo geral dessas atividades e fazer o aluno se interessar pela aula e fazê-lo ser mais ativo em sala de aula, então tenha cuidado na hora de cobrar demais e fazer ele perde o interesse e o foco da aula.

Finalizado essa última atividade, fica a critério do professor regente o como avaliar desenvolvimento do seu aluno nas atividades. No nosso caso, fizemos uma atividade avaliativa quantitativa com questões sobre as razões e fizemos também uma avaliação qualitativa no qual avaliamos o comportamento, a dedicação e a participação deles durante as aulas.

Conversa final com o leitor

Este material foi pensado e elaborado de maneira que possa ajudar o professor regente de matemática a introduzir as razões trigonométricas em sala, diversificar sua metodologia de aula e principalmente fazer com que o aluno tenha mais interesse nas aulas de matemática, fazendo com que ele seja mais participativo.

Esperamos que com este material, o professor possa ver a tecnologia em sala de aula e o ensino por atividade com outros olhos e entender que TICs vieram para ficar e cada vez mais precisamos usá-las como recursos para fazer o aluno a voltar a se interessar a estudar.

Nós professores somos apaixonados pelo que fazemos, podemos juntos lutar e trabalhar por um ensino e aprendizagem da matemática mais significativa e instigante para os alunos e para os professores, mudando aquele velho olhar que a matemática é algo muito difícil de se aprender e compreender.

Sobre os autores

Erick Cristian Tourão Oliveira

Licenciado em Matemática pela Universidade Estado do Pará (UEPA) em 2014. Especialização em Ensino da Matemáticas Básica pela Faculdade Brasil Amazonia-FIBRA em 2015. Atualmente professor de Matemática Efetivo da Secretaria de Educação do Mato Grosso (SEDUC-MT).

Miguel Tadayuki Koga

Licenciado em Matemática pela Faculdade de Filosofia-Ciências e letras de Arapongas - FAFCLA, em Arapongas/PR, no ano de 1988. Especialização em Matemática Superior pelo Pontíficia Universidade Católico de Minas gerais PUC-MG, em 1995. Mestrado em Educação matemática pela Universidade Estadual Paulista. UNESP/Rio Claro. Aperfeiçoamento em Matemáticas pela universidade de Campinas - UNICAMP em 2006. Doutor em Engenharia Elétrica pela UNICAMP em 2015. Professor Eletivo da Universidade do Estado de Moto Grosso, UNEMAT, desde 1990.

Referências

ARAUJO, L. C. L. de; NÓBRIGA, J. C. C. Aprendendo matemática com o GeoGebra. Editora Exato, São Paulo, 2010.

BAGGIOTTO, C. C.; BERNARDI, L. dos S.; GREGOLIN, V. M. GeoGebra em dispositivos móveis: o ensino de geometria na perspectiva da educação matemática crítica. Ensino da Matemática em Debate, v. 7, n. 3, p. 349–375, 2020.

JORDÃO, T. C. Formação de educadores: a formação do professor para a educação em um mundo digital. In. TECNOLOGIAS DIGITAIS NA EDUCAÇÃO, 19, 2009. Brasília: MEC, 2009. Disponível em: http://portaldoprofessor.mec.gov.br/storage/materiais/0000012178. pdf. Acesso em: 21 abr. 2023

NASCIMENTO, Maurício A. **Ensino-aprendizagem de trigonometria: explorando e resolvendo problemas**. In: In: Encontro nacional de educação matemática, 11, 2013. Curitiba. Anais... Curitiba: SBEM, 2013.

OLIVEIRA, Francisco Canindé. "**Dificuldade no processo de ensino aprendizagem de trigonometria por meio de atividades**" 2006. Disponível em <https://repositorio.ufrn.br/bitstream/123456789/16022/1/FranciscoCanindeO.pdf > acessado dia 10 de abril de 2024.

PERSICANO, Hélio Evangelista. **A importância do uso das novas tecnologias no processo de ensino e aprendizagem:** Aplicação do Software GeoGebra no Estudo das Funções Trigonométricas. 2013. Acessado em: 30 de abril 2024.