

INSTITUTO NACIONAL DE MATEMÁTICA PURA E APLICADA MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL

Frações contínuas, representações de números reais e aproximação de números reais por números racionais

Alexander Pinto Pereira

Rio de Janeiro 2016

Alexander Pinto Pereira

INSTITUTO NACIONAL DE MATEMÁTICA PURA E APLICADA MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL

Frações contínuas, representações de números reais e aproximação de números reais por números racionais

Trabalho de Conclusão de Curso do Mestrado Profissional em Matemática em Rede Nacional, apresentado ao Instituto Nacional de Matemática Pura e Aplicada como requisito parcial para a obtenção do título de Mestre.

Orientador: Prof. Dr. Carlos Gustavo T. de A. Moreira

Alexander Pinto Pereira

INSTITUTO NACIONAL DE MATEMÁTICA PURA E APLICADA MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL

	ros reais e aproximação de números reais por racionais
	Trabalho de Conclusão de Curso do Mestrado Profissional em Matemática em Rede Nacional, apresentado ao Instituto Nacional de Matemática Pura e Aplicada como requisito parcial para a obtenção do título de Mestre.
BANCA EX	AMINADORA
Prof. Dr. Carlos Gustavo T. de	A. Moreira (Orientador) - IMPA
Prof. Dr. Roberto Im	buzeiro Oliveira - IMPA

Prof. Dr. Luiz Amancio de Sousa Junior - UNIRIO

Agradecimentos

Agradeço em primeiro lugar a Deus. A Ele, toda glória e todo louvor.

Agradeço ao IMPA, ao PROFMAT e a CAPES por proporcionar essa chance única aos professores do Ensino Básico.

Agradeço ao Professor Carlos Gustavo Moreira (Gugu) pela confiança, incentivo, conselho e orientação nessa obra.

Agradeço aos professores do Instituto Nacional de Matemática Pura e Aplicada pela dedicação, respeito e atenção dedicada a todos os mestrandos desse programa.

Agradeço aos colegas de turma sempre dispostos a ajudar, em particular, Felipe Carvalho e Alexandre Amandula.

Agradeço aos colegas professores do Colégio Pedro II por todo apoio e incentivo.

Agradeço aos meus pais Jair e Ilka pelos sacrifícios e pelo incentivo com relação aos estudos e aos meus irmãos Mônica, Jaqueline e Adriano pelo apoio, motivação e companheirismo.

E por fim, em especial, agradeço à minha esposa Verônica, pelo amor, paciência, ajuda e sacrifício.

Resumo

Neste trabalho, apresentamos uma definição para a expansão em frações contínuas, identificando as características mais simples e buscando através da análise de alguns exemplos, nos familiarizarmos com esta forma de representação numérica. Mostramos a ligação desta expansão e o algoritmo de Euclides para o cálculo do mdc. Explorando as propriedades dos convergentes, abordamos a aproximação de números irracionais por números racionais, mostrando que as melhores aproximações são obtidas via frações contínuas. Apresentamos, de forma breve, a denominada equação de Pell e um método para resolver este tipo de equação com esta representação. Abordamos a conexão da expansão em frações contínuas e a transformação de Gauss através do estudo das iterações desta transformação. E no final, trazemos uma série de atividades para alunos do Ensino Médio visando apresentar a expansão em frações contínuas, suas principais propriedades e as conexões que aparecem neste trabalho. Aproveitamos também para fazer uma primeira caracterização dos números irracionais entre algébricos e transcendentes.

Palavras-chave: Frações contínuas - Algoritmo de Euclides - Aproximação de números irracionais - Equação de Pell - Transformação de Gauss

Sumário

1 Introdução								
2	Definição e Exemplos2.1 Definição2.2 Exemplos2.2.1 Alguns números racionais2.2.2 Os números $\sqrt{2}$ e $\sqrt{3}$ 2.2.3 O número π 2.2.4 O número de ouro ϕ 2.2.5 O número e	13 14						
3	Frações contínuas e o algoritmo de Euclides	17						
4	Definição de convergente	25						
5	Definição	36						
6	Os aspectos dinâmicos das frações contínuas	4 6						
7	Uma (nova) forma de representar números reais	54 58						
8	Conclusão	67						

Lista de Figuras

6.1 Gráfico da transformação de Gauss	6.1	Gráfico da	transformação de	Gauss																				4	7
---------------------------------------	-----	------------	------------------	-------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	---

Lista de Tabelas

2.1	Cálculo dos quocientes parciais da expansão de $\sqrt{2}$	12
2.2	Cálculo dos quocientes parciais da expansão de $\sqrt{3}$	12
2.3	Cálculo dos quocientes parciais da expansão de π	13
2.4	Cálculo dos quocientes parciais da expansão de ϕ	14
2.5	Cálculo dos quocientes parciais da expansão de e	15
<i>1</i> 1	Análise do erro relativo dos convergentes da expansão de $\sqrt{2}$	3/1
4.1	Thanse do cito relativo dos convergentes da expansão de $\sqrt{2}$	OH
4.2	Análise do erro relativo dos convergentes da expansão de π	35

Capítulo 1

Introdução

É possível caracterizar as melhores aproximações de um dado número real, identificar uma forma de obtê-las e o que esperar da qualidade dessas aproximações comparadas com a complexidade das aproximações racionais?

A representação decimal de um número real tem como um de seus méritos a praticidade para efetuar cálculos porém, sua utilização está relacionada a uma escolha arbitrária de uma base 10 e, ainda pode ocultar outras aproximações racionais muito melhores do que se pode esperar, comparando os tamanhos do denominadores envolvidos em uma representação e na outra.

A representação por frações contínuas possui uma conceituação simples e fornece aproximações racionais muito boas, chegando a causar surpresa, pois consegue alcançar com denominadores relativamente pequenos, uma grande eficiência na aproximação.

Além disso, a teoria básica de frações contínuas se relaciona com outros temas de Aritmética, como o algoritmo de Euclides. Também podemos utilizar frações contínuas para estudar um certo tipo de equação diofantina, denominado equação de Pell.

No Capítulo 2, apresentaremos uma definição para a expansão em frações contínuas, identificando as suas características mais simples e buscando através da análise de alguns exemplos, nos familiarizarmos com esta forma de representação numérica pouco difundida. Aqui já aparecerão classes distintas de números - racionais, irracionais algébricos e irracionais transcendentes -, mas sem que sejam plenamente caracterizados. Nos capítulos posteriores, vamos nos ater à descrição destas caracterizações.

No Capítulo 3, será mostrada, através da divisão euclidiana, a ligação da expansão em frações contínuas de um número racional com o algoritmo de Euclides para o cálculo do máximo divisor comum entre dois números. Neste caso, os dois serão os termos da fração

irredutível que representa o número racional em questão. Isto também colabora para ratificar a natureza finita da expansão em frações contínuas para essa classe de número.

No Capítulo 4, através da exploração das propriedades dos convergentes da expansão em frações contínuas, abordaremos a aproximação de números irracionais por números racionais, mostrando que as melhores aproximações são obtidas via frações contínuas.

No Capítulo 5, faremos uma breve apresentação da chamada equação de Pell. Mostraremos um método para resolver este tipo de equação com a expansão em frações contínuas. Neste processo, apresentaremos uma breve diferenciação entre números algébricos e números transcendentes.

No Capítulo 6, mostraremos a conexão da expansão em frações contínuas e a transformação de Gauss através do estudo das iterações desta transformação. Este fato nos permitirá analisar a dinâmica da obtenção dos quocientes parcias da expansão.

No Capítulo 7, trazemos uma série de atividades para alunos do Ensino Médio visando apresentar a expansão em frações contínuas, suas principais propriedades e as conexões que aparecem neste trabalho: com o Algoritmo de Euclides para o mdc, com a equação de Pell e com a transformação de Gauss. Aproveitamos também para fazer uma primeira caracterização dos números irracionais entre algébricos e transcendentes.

E finalmente, no Capítulo 8, apresentamos as conclusões deste trabalho e as possíveis indicações de continuidade.

Capítulo 2

Definição e Exemplos

2.1 Definição

Uma fração contínua é uma expressão da forma

$$a_{0} + \frac{b_{1}}{a_{1} + \frac{b_{2}}{a_{2} + \frac{b_{3}}{a_{3} + \frac{b_{4}}{a_{4} + \dots}}}}$$

onde a_0 , a_1 , a_2 , ... e b_1 , b_2 , b_3 , ... podem ser números reais ou complexos, ou funções de variáveis reais ou complexas. O números de termos pode ser finito ou infinito.

Uma forma mais simplificada da expressão acima é a **fração contínua simples** ou **fração contínua regular**

$$a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \frac{1}{a_4 + \dots}}}}$$

onde $a_1, a_2, a_3, ...$ são números inteiros positivos e a_0 , um inteiro qualquer. Esta expressão pode escrita na forma $[a_0; a_1, a_2, a_3, a_4, ...]$, tornando mais fácil a sua apresentação. Os a_i 's são chamados de *quocientes parciais* da fração contínua.

A expressão acima representa uma fração contínua simples infinita, isto é, com sequência infinita de a_i 's.

Uma fração contínua simples finita é uma expressão da forma

$$a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \dots + \frac{1}{a_n}}}},$$

que pode ser denotada por $[a_0; a_1, a_2, a_3, ..., a_n]$.

Doravante neste trabalho, sem prejuízo da clareza, iremos denominar simplesmente de **frações contínuas**, as frações contínuas simples, pois abordaremos apenas as características e potencialidades deste tipo de representação.

2.2 Exemplos

2.2.1 Alguns números racionais

O nosso objetivo principal é utilizar a representação em frações contínuas com números irracionais, porém vamos obter esta representação (também chamada de expansão) de alguns números racionais, para podermos nos acostumar com essa forma de representar números.

Exemplo 2.1. Obtendo a representação do número $\frac{41}{13}$:

Dividimos 41 por 13 e obtemos

$$41 = 13 \cdot 3 + 2$$
.

Assim, podemos escrever

$$\frac{41}{13} = \frac{13 \cdot 3 + 2}{13} = 3 + \frac{2}{13}.$$

Agora, fazemos 13 dividido por 2 e temos

$$13 = 2 \cdot 6 + 1.$$

Daí, encontramos

$$\frac{41}{13} = 3 + \frac{2}{13} = 3 + \frac{1}{\frac{13}{2}} = 3 + \frac{1}{\frac{2 \cdot 6 + 1}{2}} = 3 + \frac{1}{6 + \frac{1}{2}}.$$

Como 2 dividido por 1 dá resto zero, paramos o processo e escrevemos

$$\frac{41}{13} = [3; 6, 2]$$

Exemplo 2.2. Encontrando as representações de outros números racionais:

a)
$$\frac{11}{7}$$

$$\frac{11}{7} = 1 + \frac{4}{7} = 1 + \frac{1}{\frac{7}{4}} = 1 + \frac{1}{1 + \frac{3}{4}} = 1 + \frac{1}{1 + \frac{1}{\frac{4}{3}}} = 1 + \frac{1}{1 + \frac{1}{\frac{1}{3}}}$$

Assim,
$$\frac{11}{7} = [1; 1, 1, 3].$$

b)
$$-\frac{51}{23}$$

$$-\frac{51}{23} = -\frac{69}{23} + \frac{18}{23} = -3 + \frac{18}{23} = -3 + \frac{1}{\frac{23}{18}} = -3 + \frac{1}{1 + \frac{5}{18}} = -3 + \frac{1}{1 + \frac{1}{\frac{18}{5}}} = -3 + \frac{1}{1 + \frac{1}{\frac{3}{5}}} = -3 + \frac{1}{1 + \frac{1}$$

$$= -3 + \frac{1}{1 + \frac{1}{3 + \frac{1}{\frac{1}{5}}}} = -3 + \frac{1}{1 + \frac{1}{3 + \frac{1}{1 + \frac{2}{3}}}} = -3 + \frac{1}{1 + \frac{1}{3 + \frac{1}{1 + \frac{1}{\frac{1}{3}}}}} = -3 + \frac{1}{1 + \frac{1}{3 + \frac{1}{1 + \frac{1}{2}}}} = -3 + \frac{1}{1 + \frac{1}{3 + \frac{1}{1 + \frac{1}{2}}}} = -3 + \frac{1}{1 + \frac{1}{3 + \frac{1}{1 + \frac{1}{2}}}} = -3 + \frac{1}{1 + \frac{1}{3 + \frac{1}{1 + \frac{1}{2}}}} = -3 + \frac{1}{1 + \frac{1}{3 + \frac{1}{1 + \frac{1}{2}}}} = -3 + \frac{1}{1 + \frac{1}{3 + \frac{1}{1 + \frac{1}{2}}}} = -3 + \frac{1}{1 + \frac{1}{3 + \frac{1}{1 + \frac{1}{3}}}} = -3 + \frac{1}{1 + \frac{1}{3 + \frac{1}{1 + \frac{1}{3}}}} = -3 + \frac{1}{1 + \frac{1}{3 + \frac{1}{1 + \frac{1}{3}}}} = -3 + \frac{1}{1 + \frac{1}{3 + \frac{1}{1 + \frac{1}{3}}}} = -3 + \frac{1}{1 + \frac{1}{3 + \frac$$

Assim,
$$-\frac{51}{23} = [-3; 1, 3, 1, 1, 2].$$

c)
$$\frac{114}{235}$$

$$\frac{114}{235} = \frac{1}{\frac{235}{114}} = \frac{1}{2 + \frac{7}{114}} = \frac{1}{2 + \frac{1}{\frac{114}{7}}} = \frac{1}{2 + \frac{1}{16 + \frac{2}{7}}} = \frac{1}{2 + \frac{1}{16 + \frac{1}{\frac{7}{2}}}} = \frac{1}{2 + \frac{1}{16 + \frac{1}{\frac{1}{2}}}} = \frac{1}{2 + \frac{1}{16 + \frac{1}{\frac{1}{2}}}}$$

Assim,
$$\frac{114}{235} = [0; 2, 16, 3, 2].$$

d)
$$\frac{31}{12}$$

$$\frac{31}{12} = 2 + \frac{7}{12} = 2 + \frac{1}{\frac{12}{7}} = 2 + \frac{1}{1 + \frac{5}{7}} = 2 + \frac{1}{1 + \frac{1}{\frac{7}{5}}} = 2 + \frac{1}{1 + \frac{1}{1 + \frac{2}{5}}} = 2 + \frac{1}{1 + \frac{1}{\frac{1}{1 + \frac{1}{2}}}} = 2 + \frac{1}{1 + \frac{1}{1 + \frac{1}{2}}}$$

$$= 2 + \frac{1}{1 + \frac{1}{1 + \frac{1}{5}}} = 2 + \frac{1}{1 + \frac{1}{1 + \frac{1}{2}}}$$

Assim,
$$\frac{31}{12} = [2; 1, 1, 2, 2].$$

e)
$$\frac{12}{31}$$
 = $\frac{1}{\frac{31}{12}} = \frac{1}{2 + \frac{7}{12}} = \frac{1}{2 + \frac{1}{\frac{12}{7}}} = \frac{1}{2 + \frac{1}{1 + \frac{5}{7}}} = \frac{1}{2 + \frac{1}{1 + \frac{1}{\frac{7}{5}}}} = \frac{1}{2 + \frac{1}{1 + \frac{1}{1 + \frac{2}{5}}}} = \frac{1}{2 + \frac{1}{1 + \frac{1}{1 + \frac{2}{5}}}} = \frac{1}{2 + \frac{1}{1 + \frac{1}{1 + \frac{1}{2}}}} = \frac{1}{2 + \frac{1}{1 + \frac{1}{1 + \frac{1}{2}}}} = \frac{1}{2 + \frac{1}{1 + \frac{1}{1 + \frac{1}{2}}}}$

Assim,
$$\frac{12}{31} = [0; 2, 1, 1, 2, 2].$$

Com estes primeiros exemplos já podemos notar que a_0 representa a parte inteira do número que queremos representar com frações contínuas.

2.2.2 Os números $\sqrt{2}$ e $\sqrt{3}$

Agora vamos obter a expansão em frações contínuas dos irracionais $\sqrt{2}$ e $\sqrt{3}$. Para isso, utilizaremos o procedimento que aparece em (CARNEIRO).

- a) $\sqrt{2}$
- Como $1 < \sqrt{2} < 2$ temos $\sqrt{2} = 1 + n$, sendo 0 < n < 1, e $a_0 = 1$.
- Fazendo $n = \frac{1}{x}$ teremos x > 1 e assim,

$$\sqrt{2} = 1 + \frac{1}{x} \Longrightarrow x = \frac{1}{\sqrt{2} - 1} = \sqrt{2} + 1$$

- Como 2 < x < 3 temos $x = 2 + \frac{1}{y}$, sendo y > 1, e $a_1 = 2$.
- -Assim,

$$x = 2 + \frac{1}{y} \Longrightarrow y = \frac{1}{x - 2} = \frac{1}{\sqrt{2} - 1} = \sqrt{2} + 1 = x$$

- Como 2 < y < 3 temos $y = 2 + \frac{1}{z}$, sendo z > 1, e $a_2 = 2$.
- -Assim,

$$y = 2 + \frac{1}{z} \Longrightarrow z = \frac{1}{y - 2} = \frac{1}{\sqrt{2} - 1} = \sqrt{2} + 1 = y$$

- Como 2 < z < 3 temos $z = 2 + \frac{1}{w}$, sendo w > 1, e $a_3 = 2$.
- -Assim,

$$z = 2 + \frac{1}{w} \Longrightarrow w = \frac{1}{z - 2} = \frac{1}{\sqrt{2} - 1} = \sqrt{2} + 1 = z \Longrightarrow 2 < w < 3 \Longrightarrow a_4 = 2$$

Assim, podemos observar que a expansão de $\sqrt{2}$ apresenta um comportamento notável para os quocientes parciais: $a_2 = a_3 = a_4 = a_5 = \dots = a_1 = 2$. Por isso, podemos escrever:

$$\sqrt{2} = [1; 2, 2, 2, \dots] = [1; \overline{2}]$$

- b) $\sqrt{3}$
- Como $1 < \sqrt{3} < 2$ temos $\sqrt{3} = 1 + \frac{1}{x}$, com x > 1, e $a_0 = 1$.
- -Assim,

$$\sqrt{3} = 1 + \frac{1}{x} \Longrightarrow x = \frac{1}{\sqrt{3} - 1} = \frac{\sqrt{3} + 1}{2} \Longrightarrow 1 < x < \frac{3}{2} \Longrightarrow a_1 = 1$$

$$x = 1 + \frac{1}{y} \Longrightarrow y = \frac{1}{x - 1} = \frac{2}{\sqrt{3} - 1} = \sqrt{3} + 1 \Longrightarrow 2 < y < 3 \Longrightarrow a_2 = 2$$

$$y = 2 + \frac{1}{z} \Longrightarrow z = \frac{1}{y - 2} = \frac{1}{\sqrt{3} - 1} = x \Longrightarrow a_3 = a_1$$

$$z = 1 + \frac{1}{y} \Longrightarrow w = \frac{1}{z - 1} = \frac{1}{z - 1} = y \Longrightarrow a_4 = a_2$$

No cálculo dos quocientes parciais para a expansão de $\sqrt{3}$, encontramos $a_3=a_5=a_7=\ldots=a_1$ e $a_4=a_6=a_8=\ldots=a_2$. Assim,

$$\sqrt{3} = [1; 1, 2, 1, 2, \dots] = [1; \overline{1, 2}]$$

As expansões em frações contínuas de $\sqrt{2}$ e $\sqrt{3}$ apresentam uma característica infinita e periódica, o que não ocorreu com os exemplos envolvendo números racionais. Estes fatos serão analisados com mais rigor nos capítulos seguintes.

Podemos também com o auxílio de uma calculadora, obter os valores dos quocientes parcias, conforme as tabelas a seguir.

$$\sqrt{2} = 1,41421356237309...$$

$$a_0 = 1$$

$$n_0 = 0,41421356237309...$$

$$\frac{1}{n_0} = 2,41421356237309...$$

$$a_1 = 2$$

$$n_1 = 0,41421356237309...$$

$$\frac{1}{n_1} = 2,41421356237309...$$

$$a_2 = 2$$

$$n_2 = 0,41421356237309...$$

$$\frac{1}{n_2} = 2,41421356237309...$$

$$a_3 = 2$$

$$\dots$$

$$\dots$$

$$\sqrt{2} = 1 + \frac{1}{2 + \frac{1}{2$$

Tabela 2.1: Cálculo dos quocientes parciais da expansão de $\sqrt{2}$

$\sqrt{3} = 1,73205080756887$		$a_0 = 1$						
$n_0 = 0,73205080756887$	n_0							
$n_1 = 0,36602540378443$	$0,36602540378443 \frac{1}{n_1} = 2,73205080756887$							
$n_2 = 0,73205080756887$	$\frac{1}{n_2} = 1,36602540378443$	$a_3 = 1$						
$n_3 = 0,36602540378443$	$\frac{1}{n_3} = 2,73205080756887$	$a_4 = 2$						
$\sqrt{3} = 1 + \frac{1}{1 + 1}$	1							
1 +	·							
	$2 + \frac{1}{1}$							
	$1+\frac{1}{1}$							
	$2 + \frac{1}{1}$							
$1+\frac{1}{-}$								
· .								
	·							
$\sqrt{3} = [1; 1, 2,$	$[1, 2, 1, 2, \dots] = [1; \overline{1, 2}]$							

Tabela 2.2: Cálculo dos quocientes parciais da expansão de $\sqrt{3}$

Os valores que aparecem nas tabelas foram obtidas utilizando o aplicativo TechCalc versão 3.5.6 para o sistema operacional Android.

2.2.3 O número π

O número $\pi=3,14159265358979...$ é um dos irracionais mais conhecidos da Matemática. Para obtermos a sua representação em frações contínuas, vamos repetir o processo de construção das tabelas dos números $\sqrt{2}$ e $\sqrt{3}$.

$\pi = 3,14159265358979$		$a_0 = 3$					
$n_0 = 0, 14159265358979$	$\frac{1}{n_0} = 7,06251330593105$	$a_1 = 7$					
$n_1 = 0,06251330593105$	$\frac{1}{n_1} = 15,99659440668267$	$a_2 = 15$					
$n_2 = 0,99659440668267$	$\frac{1}{n_2} = 1,00341723101643$	$a_3 = 1$					
$n_3 = 0,00341723101643$	$\frac{1}{n_3} = 292,63459075196853$	$a_4 = 292$					
$n_4 = 0,63459075196853$	$\frac{1}{n_4} = 1,57581874128789$	$a_5 = 1$					
$n_5 = 0,57581874128789$	$\frac{1}{n_5} = 1,73665761167023$	$a_6 = 1$					
$\pi = 3 + \frac{1}{7 + \frac{1}{15 + \frac{1}{1 + \frac{1}{292 + \frac{1}{1 + \frac{1}{1 + \frac{1}{\cdots}}}}}}}$							
$\pi = [3$; 7, 15, 1, 292, 1, 1,]						

Tabela 2.3: Cálculo dos quocientes parciais da expansão de π

Na Tabela 2.3, os valores dos quocientes parciais não apresentam o mesmo comportamento periódico observado nos casos de $\sqrt{2}$ e $\sqrt{3}$. Este fato, sugere que entre os números

irracionais a expansão em frações contínuas apresenta características diferentes dependendo do número que está sendo expandido.

2.2.4 O número de ouro ϕ

O número $\phi=\frac{1+\sqrt{5}}{2}=1,61803398874989...$, conhecido como *número de ouro*, possui uma representação em fração contínua bastante curiosa. Vejamos na Tabela 2.4.

$\phi = 1,61803398874989$		$a_0 = 1$						
$n_0 = 0,61803398874989$	$\frac{1}{n_0} = 1,61803398874989$	$a_1 = 1$						
$n_1 = 0,61803398874989$	$\frac{1}{n_1} = 1,61803398874989$	$a_2 = 1$						
$n_2 = 0,61803398874989$	$\frac{1}{n_2} = 1,61803398874989$	$a_3 = 1$						
$\phi = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \dots}}}}$								
$\phi = [1; 1, 1, 1, \ldots] = [\overline{1}]$								

Tabela 2.4: Cálculo dos quocientes parciais da expansão de ϕ

2.2.5 O número e

O número e=2,71828182845904..., que é a base do sistema dos logaritmos neperianos, também apresenta uma expansão em frações contínuas com quocientes parciais com um comportamento bem peculiar.

e = 2,71828182845904		$a_0 = 2$							
$n_0 = 0,71828182845904$	$\frac{1}{n_0} = 1,39221119117733$	$a_1 = 1$							
$n_1 = 0,39221119117733$	$\frac{1}{n_1} = 2,54964677830384$	$a_2 = 2$							
$n_2 = 0,54964677830384$	$\frac{1}{n_2} = 1,8193502435980$	$a_3 = 1$							
$n_3 = 0,8193502435980$	$\frac{1}{n_3} = 1,22047928564542$	$a_4 = 1$							
$n_4 = 0,22047928564542$	$\frac{1}{n_4} = 4,53557347608704$	$a_5 = 4$							
$n_5 = 0,53557347608704$	$\frac{1}{n_5} = 1,86715743898691$	$a_6 = 1$							
$n_6 = 0,86715743898691$	$\frac{1}{n_6} = 1,15319312853763$	$a_7 = 1$							
$n_7 = 0, 15319312853763$	$\frac{1}{n_7} = 6,52770793015254$	$a_8 = 6$							
2 .	1								
$e = 2 + {1 + - }$	1								
2+-	1								
1	+ - 1								
	$1+\frac{1}{1}$								
$4 + \frac{1}{1 + \frac{1}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$									
$1 + \frac{1}{1 + \frac{1}{1$									
	·•.								
e = [2; 1,	$2, 1, 1, 4, 1, 1, 6, \ldots$								

Tabela 2.5: Cálculo dos quocientes parciais da expansão de \boldsymbol{e}

Neste primeiro contato com as frações contínuas tivemos a oportunidade de verificar algumas propriedades, que serão demonstradas em capítulos posteriores:

• números racionais apresentam expansão finita;

meros irracion ando o número			

Capítulo 3

Frações contínuas e o algoritmo de Euclides

Em vista das expansões em frações contínuas de alguns números racionais obtidas no capítulo anterior,

$$\frac{41}{13} = [3; 6, 2],$$

$$\frac{11}{7} = [1; 1, 1, 3],$$

$$-\frac{51}{23} = [-3; 1, 3, 1, 1, 2],$$

$$\frac{114}{235} = [0; 2, 16, 3, 2],$$

$$\frac{31}{12} = [2; 1, 1, 2, 2],$$

$$\frac{12}{31} = [0; 2, 1, 1, 2, 2],$$

nos parecem naturais as seguintes questões:

- Um número racional quando respresentado por uma fração contínua apresenta sempre uma expansão finita?
- Se temos uma fração contínua finita podemos afirmar ser esta a representação de um número racional?

Para responder a estas duas perguntas apresentaremos uma proporsição, que será demonstrada com os argumentos da divisão euclidiana e que tem no algoritmo de Euclides para o obter o máximo divisor comum (daqui em diante, apenas mdc) um grande auxílio.

Antes porém, de enunciar o resultado central deste capítulo, vamos relembrar a divisão euclidiana, que pode ser proposta assim:

Proposição 3.1 (Divisão euclidiana). Dados dois inteiros p e q, com $q \neq 0$, existem um único par de inteiros a e r tais que

$$p = aq + r$$
 $com 0 \le r < |q|$,

onde a é chamado de quociente e r, de resto.

Demonstração. Tomando q > 0 (para q < 0 o processo é análogo), existe a que satisfaz a:

$$aq \le p < (a+1)q$$
.

Deste modo, temos $p - aq \ge 0$ e p - aq < aq + q < q. Portanto, ao definir r = p - aq, garantimos a existência de r e de a. O fato de serem únicos, pode ser comprovado, se supormos que existam outros números a_1 e r_1 tais que $p = a_1q + r_1$ com $0 \le r_1 < q$.

Se isso for verdadeiro, temos

$$p = aq + r = a_1q + r_1$$

Decorre daí que

$$(aq + r) - (a_1q + r_1) = 0 \Longrightarrow q(a - a_1) = r_1 - r \Longrightarrow q|(r_1 - r)$$

Porém, como r < q e $r_1 < q$, temos $r_1 - r < q$ e, portanto, devemos ter $r_1 - r = 0$, isto é, $r_1 = r$. Assim, $a_1q = aq \Longrightarrow a_1 = a$, já que $q \ne 0$.

Por isso, quando fizemos a primeira divisão no Exemplo 1 do capítulo anterior, encontramos 3 e 2 tais que $41 = 3 \cdot 13 + 2$, que são únicos para a divisão euclidiana. Da mesma forma, 6 e 1 na segunda divisão e, 2 e 0 na terceira.

O Algoritmo de Euclides (que aparece no sétimo livro dos Elementos) é usado para obter o mdc de dois números inteiros. Se considerarmos p e q como estes inteiros, o algoritmo pode descrito pelas equações

$$p = a_0 q + r_0, \quad 0 < r_0 < q,$$

$$q = a_1 r_0 + r_1, \quad 0 < r_1 < r_0,$$

$$r_0 = a_2 r_1 + r_2, \quad 0 < r_2 < r_1,$$

$$\cdots$$

$$r_{n-3} = a_{n-1} r_{n-2} + r_{n-1}, \quad 0 < r_{n-1} < r_{n-2},$$

$$r_{n-2} = a_n r_{n-1}, \quad 0 = r_n,$$

e afirma que r_{n-1} é o mdc de p e q.

Para mostrar que este último resto não nulo realmente é o mdc de p e q, precisamos verificar se ele satisfaz às duas condições a seguir:

- (a) o mdc divide ambos os inteiros $p \in q$;
- (b) qualquer divisor comum de p e de q divide o mdc.

Além disso, precisamos observar que dados r, s e t inteiros tais que r = s + t, então qualquer inteiro k que divide r e s deve dividir t. Se k divide r então $r = km_1$ onde m_1 é um inteiro. Se k divide s então $s = km_2$ onde m_2 é um inteiro. Visto que r - s = t, temos

$$r - s = km_1 - km_2 = k(m_1 - m_2) = t,$$

de modo que k divide t. Também, se qualquer k divide s e t então k divide r.

Agora vamos analisar a situação de r_{n-1} . A equação

$$r_{n-2} = a_n r_{n-1},$$

mostra que r_{n-1} divide r_{n-2} . A equação imediatamente acima, ou seja,

$$r_{n-3} = a_{n-1}r_{n-2} + r_{n-1},$$

mostra que r_{n-1} divide r_{n-3} , já que ele divide r_{n-2} e r_{n-1} . Do mesmo modo, da equação

$$r_{n-4} = a_{n-2}r_{n-3} + r_{n-2},$$

vemos que r_{n-1} divide r_{n-4} , visto que ele divide r_{n-2} e r_{n-3} . Assim, trabalhando de equação em equação, descobrimos que r_{n-1} divide r_2 e r_3 e assim, divide também r_1 . Dividindo r_2 e r_1 , ele divide r_0 ; dividindo r_0 e r_1 , ele divide r_0 ; e finalmente, dividindo r_0 e r_0 , r_1 divide r_0 . Por isso, a condição (a) é satisfeita, pois r_1 divide r_0 e r_0 .

Em seguida, mostramos que se um número c é divisor comum de p e q então c divide r_0 , por causa da primeira equação. Se c divide q e r_0 então c divide r_1 na segunda equação. Se c divide r_1 e r_0 então, na terceira equação, c divide r_2 . E assim, até alcançar a penúltima equação onde se c divide r_{n-3} e r_{n-2} então c divide r_{n-1} . Desta forma, provamos que r_{n-1} é o mdc de p e q.

O algoritmo ainda pode ter sua equações sintetizadas da forma:

	a_0	a_1	a_2	a_3	a_{n-2}	a_{n-1}	a_n
p	q	r_0	r_1	r_2	 r_{n-3}	r_{n-2}	r_{n-1}
r_0	r_1	r_2	r_3		r_{n-1}	0	

Posto isso, podemos enunciar o seguinte resultado:

Proposição 3.2. Toda fração contínua finita representa um número racional. Reciprocamente, todo número racional é representado por uma fração contínua finita.

Demonstração. A primeira parte segue naturalmente da possibilidade de reversão do processo de expansão. A recíproca pode ser demonstrada considerando um número racional x tal que

$$x = \frac{p}{q}, \quad q > 0.$$

Tomando a primeira equação do algoritmo de Euclides, e dividindo os termos por q, temos

$$x = \frac{p}{q} = a_0 + \frac{r_0}{q}, \quad 0 \le r_0 < q.$$

Se $r_0 = 0$ então $x = [a_0]$. Caso contrário, podemos escrever

$$\frac{q}{r_0} = a_1 + \frac{r_1}{r_0}, \quad 0 \le r_1 < r_0,$$

que é a segunda equação do algoritmo de Euclides com os termos divididos por r_0 .

Se $r_1 = 0$ então

$$x = \frac{p}{q} = a_0 + \frac{1}{a_1} = [a_0; a_1].$$

Caso contrário, escrevemos

$$\frac{r_0}{r_1} = a_2 + \frac{r_2}{r_1}, \quad 0 \le r_2 < r_1.$$

Imediatamente, percebemos que escrevendo as equações do algoritmo de Euclides, na forma

$$\frac{p}{q} = a_0 + \frac{r_0}{q}, \quad 0 < r_0 < q,$$

$$\frac{q}{r_0} = a_1 + \frac{r_1}{r_0}, \quad 0 < r_1 < r_0,$$

$$\frac{r_0}{r_1} = a_2 + \frac{r_2}{r_1}, \quad 0 < r_2 < r_1,$$

. . .

$$\frac{r_{n-3}}{r_{n-2}} = a_{n-1} + \frac{r_{n-1}}{r_{n-2}}, \quad 0 < r_2 < r_1,$$

$$\frac{r_{n-2}}{r_{n-1}} = a_n, \quad 0 = r_n,$$

podemos utilizar o algoritmo de Euclides para obter também a representação em fração contínua de qualquer número racional e que a quantidade de a_i 's é finita pois o processo possui no máximo r_0 etapas. Assim, a nossa proposição fica demonstrada.

Além disso, a sintetização do processo facilita ainda mais a obtenção da expansão em

fração contínua.

Por exemplo, no caso do número $\frac{125}{37}$, temos no processo utilizado no início do capítulo 2,

$$\frac{125}{37} = 3 + \frac{14}{37} = 3 + \frac{1}{\frac{37}{14}} = 3 + \frac{1}{2 + \frac{9}{14}} = 3 + \frac{1}{2 + \frac{1}{\frac{14}{9}}} = 3 + \frac{1}{2 + \frac{1}{1 + \frac{5}{9}}} = 3 + \frac{1}{2 + \frac{1}{1 + \frac{1}{\frac{9}{5}}}} = 3 + \frac{1}{2 + \frac{1}{1 + \frac{1}{\frac{9}}}} = 3 + \frac{1}{2 + \frac{1}{1 + \frac{1}{\frac{9}{5}}}} = 3 + \frac{1}{2 + \frac{1}{1 + \frac{1}{\frac{9}}}} = 3 + \frac{1}{2 + \frac{1}{1 + \frac{1}{1 + \frac{1}{\frac{9}}}}} = 3 + \frac{1}{2 + \frac{1}{1 + \frac{1}{1 + \frac{1}{\frac{9}}}}} = 3 + \frac{1}{2 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}$$

$$=3+\frac{1}{2+\frac{1}{1+\frac{1}{1+\frac{4}{5}}}}=3+\frac{1}{2+\frac{1}{1+\frac{1}{1+\frac{1}{5}}}}=3+\frac{1}{2+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{4}}}}}=[3;2,1,1,1,4]$$

e agora podemos fazer,

que também nos dá, através da primeira linha, $\frac{125}{37} = [3; 2, 1, 1, 1, 4].$

Considerando que o último termo a_n pode ser substituído por $a_n - 1 + \frac{1}{1}$, notamos que um número racional x que é representado por $[a_0; a_1, a_2, ..., a_n]$ também pode ser representado por $[a_0; a_1, a_2, ..., a_n - 1, 1]$. Isto faz com que $\frac{125}{37}$ possa ter [3; 2, 1, 1, 1, 3, 1], que corresponde a

$$3 + \frac{1}{2 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1}}}}}},$$

também como representação.

Assim, podemos enunciar a seguinte proporsição:

Proposição 3.3. Todo número racional é representado por uma fração contínua finita de apenas duas formas; uma com um número par de termos, e a outra, com um número ímpar. Uma com último termo igual a 1, e a outra, com esse termo maior do que 1.

Lembramos que este tipo de fenômeno também ocorre na representação decimal, como por exemplo, no caso do número 5 que pode ser escrito como 5,0000... ou 4,9999... .

Terminamos este capítulo, generalizando o resultado ocorrido com $\frac{31}{12}$ e $\frac{12}{31}$, onde se p>q e

$$\frac{p}{q} = [a_0; a_1, a_2, ..., a_n]$$

então

$$\frac{q}{p} = [0; a_0, a_1, a_2, ..., a_n].$$

Por simples observação, temos

$$\frac{q}{p} = 0 + \frac{1}{\frac{p}{q}}$$

Assim, se
$$\frac{p}{q} = [a_0; a_1, a_2, ..., a_n]$$
 então

$$\frac{q}{p} = 0 + \frac{1}{a_0 + \frac{1}{a_1 + \dots + \frac{1}{a_1$$

$$a_2 + \cdots + \frac{1}{a_n}$$

Capítulo 4

Convergentes e a aproximação de irracionais

4.1 Definição de convergente

Nos capítulos anteriores vimos que todo número racional $\frac{p}{q}$ pode ser expandido em uma fração contínua finita

$$\frac{p}{q} = [a_0; a_1, a_2, ..., a_n],$$

onde a_0 é um inteiro qualquer e $a_1, a_2, ..., a_n$ são inteiros positivos. Esses números, no Capítulo 2, foram chamados de quocientes parciais. Com eles podemos formar as seguintes frações:

$$c_0 = \frac{a_0}{1};$$

$$c_1 = a_0 + \frac{1}{a_1};$$

$$c_2 = a_0 + \frac{1}{a_1 + \frac{1}{a_2}};$$
...

e assim sucessivamente, interrompendo a sequência de a_i 's.

Estas frações são chamadas, respectivamente, de primeiro, segundo, terceiro, ... convergentes da fração contínua que representa $\frac{p}{q}$.

O convergente de ordem n+1,

$$c_n = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \dots + \frac{1}{a_n}}}$$

é igual à própria fração contínua.

Retomando a expansão em fração contínua de $\frac{31}{12}$, temos

$$\frac{31}{12} = [2; 1, 1, 2, 2],$$

isto é, $a_0 = 2$, $a_1 = 1$, $a_2 = 1$, $a_3 = 2$ e $a_4 = 2$. Então, os convergentes de $\frac{31}{12}$ são:

$$c_0 = \frac{2}{1} = 2$$

$$c_1 = 2 + \frac{1}{1} = 3$$

$$c_2 = 2 + \frac{1}{1 + \frac{1}{1}} = \frac{5}{2}$$

$$c_3 = 2 + \frac{1}{1 + \frac{1}{1 + \frac{1}{2}}} = \frac{13}{5}$$

$$c_4 = 2 + \frac{1}{1 + \frac{1}{1 + \frac{1}{2}}} = \frac{31}{12}$$

Como a expansão de um número racional é finita, o último convergente é o próprio número. No caso de um número irracional, não obtemos o número propriamente dito, mas valores cada vez mais próximos dele, a medida que tomamos convergentes de ordens superiores.

Vamos agora observar, por exemplo, o comportamento dos 5 primeiros convergentes oriundos da representação de $\sqrt{2}$. No Capítulo 2, vimos que $\sqrt{2} = [1; 2, 2, 2, ...]$. Portanto,

$$c_0 = 1$$

$$c_1 = 1 + \frac{1}{2} = \frac{3}{2} = 1, 5$$

$$c_2 = 1 + \frac{1}{2 + \frac{1}{2}} = \frac{7}{5} = 1, 4$$

$$c_3 = 1 + \frac{1}{2 + \frac{1}{2}} = \frac{17}{12} = 1, 4166667$$

$$c_4 = 1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2}}}} = \frac{41}{29} = 1,4137931$$

Se compararmos estes valores com a aproximação decimal de $\sqrt{2} \cong 1,4142136,$ podemos notar que:

- conforme a ordem do convergente aumenta, o seu valor se torna mais próximo do valor do número que foi expandido na fração contínua.
- para estes 5 convergentes temos

$$c_0 < c_2 < c_4 < \sqrt{2} < c_3 < c_1$$

Em seções posteriores deste capítulo veremos estes dois fatos serem consolidados. Em primeiro lugar, analisando as propriedades dos convergentes, e depois, constatando que estes fornecem as melhores aproximações racionais para os números irracionais.

4.2 Propriedades dos convergentes

Sendo
$$c_n = \frac{p_n}{q_n}$$
 temos,

Proposição 4.1. Dada uma sequência (finita ou infinita) $a_0, a_1, a_2, a_3, ... \in \mathbb{R}$ tal que $a_k > 0$, para todo $k \ge 1$, temos as sequências (p_n) e (q_n) definidas por $p_0 = a_0$, $q_0 = 1$, $p_1 = a_0 a_1 + 1$, $q_1 = a_1$, $p_{m+2} = a_{m+2} p_{m+1} + p_m$ e $q_{m+2} = a_{m+2} q_{m+1} + q_m$, para todo $m \ge 0$. Temos então

$$[a_0; a_1, a_2, a_3, ..., a_n] = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \dots + \frac{1}{a_n}}}} = \frac{p_n}{q_n}, \forall n \ge 0.$$

Além disso, $p_{n+1}q_n - p_nq_{n+1} = (-1)^n$, para todo $n \ge 0$.

Demonstração. A demonstração será por indução em n.

• Para n = 0, temos

$$[a_0] = a_0 = \frac{a_0}{1} = \frac{p_0}{q_0}$$

• Para n = 1, temos

$$[a_0; a_1] = a_0 + \frac{1}{a_1} = \frac{a_0 a_1 + 1}{a_1} = \frac{p_1}{q_1}$$

• Para n=2, temos

$$[a_0; a_1, a_2] = a_0 + \frac{1}{a_1 + \frac{1}{a_2}} = a_0 + \frac{1}{\frac{a_1 a_2 + 1}{a_2}} = a_0 + \frac{a_2}{a_1 a_2 + 1} = \frac{a_0 a_1 a_2 + a_0 + a_2}{a_1 a_2 + 1} = \frac{a_0 a_1 a_2 + a_0 + a_2}{a_1 a_2 + 1} = \frac{a_2 (a_0 a_1 + 1) + a_0}{a_1 a_2 + 1} = \frac{a_2 p_1 + p_0}{a_2 q_1 + q_0} = \frac{p_2}{q_2}$$

Suponha que a afirmação seja válida para n. Para n+1 em lugar de n temos

$$[a_0; a_1, a_2, ..., a_n, a_{n+1}] = \left[a_0; a_1, a_2, ..., a_n + \frac{1}{a_{n+1}}\right]$$

$$= \frac{\left(a_n + \frac{1}{a_{n+1}}\right) p_{n-1} + p_{n-2}}{\left(a_n + \frac{1}{a_{n+1}}\right) q_{n-1} + q_{n-2}}$$

$$= \frac{a_{n+1}(a_n p_{n-1} + p_{n-2}) + p_{n-1}}{a_{n+1}(a_n q_{n-1} + q_{n-2}) + q_{n-1}}$$

$$= \frac{a_{n+1} p_n + p_{n-1}}{a_{n+1} q_n + q_{n-1}}$$

$$= \frac{p_{n+1}}{q_{n+1}}$$

Vamos agora mostrar, por indução, a segunda afirmação. Temos, para n=0,

$$p_1q_0 - p_0q_1 = (a_0a_1 + 1) - a_0a_1 = 1 = (-1)^0$$

e, se $p_{n+1}q_n - p_nq_{n+1} = (-1)^n$ para algum valor de n, então $p_{n+2}q_{n+1} - p_{n+1}q_{n+2} = (a_{n+2}p_{n+1} + p_n)q_{n+1} - (a_{n+2}q_{n+1} + q_n)p_{n+1} = -(p_{n+1}q_n - p_nq_{n+1}) = -(-1)^n = (-1)^{n+1}$.

Com a segunda parte da proposição anterior, podemos enunciar o seguinte resultado:

Proposição 4.2. Os termos p_i e q_i do convergente $c_i = \frac{p_i}{q_i}$, $i \ge 0$ de uma fração contínua simples são primos entre si.

Demonstração. Uma vez que temos $p_{i+1}q_i - p_iq_{i+1} = (-1)^i$, segue que todo número que divide p_i e q_i também é um divisor de $(-1)^i$. Porém, $(-1)^i$ é divisível apenas por 1 e -1. Desta forma, o maior divisor comum de p_i e q_i é 1.

Na seção anterior, ao analisar alguns convergentes de $\sqrt{2}$, verificamos que quando aumentamos a ordem do convergente, nos aproximamos do valor do número irracional em questão e, que os valores dos convergentes se alternam entre maiores e menores do que o número dado.

Assim, vamos considerar o seguinte resultado:

Proposição 4.3. Os convergentes de uma fração contínua formam uma sequência $c_0, c_1, c_2, ...$ que satisfaz as seguintes propriedades:

(i)
$$c_0 < c_2 < c_4 < c_6 < \dots < c_{2n}$$

(ii)
$$c_1 > c_3 > c_5 > c_7 > \dots > c_{2n+1}$$

(iii)
$$c_{2n} < c_{2n+2} < c_{2n+1}$$

Demonstração. Tomamdo a segunda parte da Proposição 4.1 temos

$$p_{i+1}q_i - p_i q_{i+1} = (-1)^i$$

Dividindo os dois lados desta igualdade por $q_{i+1}q_i$, teremos:

$$\frac{p_{i+1}}{q_{i+1}} - \frac{p_i}{q_i} = \frac{(-1)^i}{q_{i+1}q_i}$$

Assim, temos

$$c_{i+1} - c_i = \frac{(-1)^i}{q_{i+1}q_i} \tag{4.1}$$

Sendo

$$c_{i+2} - c_i = \frac{p_{i+2}}{q_{i+2}} - \frac{p_i}{q_i} = \frac{p_{i+2}q_i - p_iq_{i+2}}{q_{i+2}q_i}$$

e, considerando que $p_{i+2} = a_{i+2}p_{i+1} + p_i$ e $q_{i+2} = a_{i+2}q_{i+1} + q_i$, obtemos

$$c_{i+2} - c_i = \frac{(a_{i+2}p_{i+1} + p_i)q_i - p_i(a_{i+2}q_{i+1} + q_i)}{q_{i+2}q_i} = \frac{a_{i+2}p_{i+1}q_i + p_iq_i - a_{i+2}p_iq_{i+1} - p_iq_i}{q_{i+2}q_i}$$

$$c_{i+2} - c_i = \frac{a_{i+2}(p_{i+1}q_i - p_iq_{i+1})}{q_{i+2}q_i} = \frac{a_{i+2}(-1)^i}{q_{i+2}q_i}$$

$$(4.2)$$

Fazendo i = 0 e i = 1 nas igualdades (4.1) e (4.2), temos

$$c_1 - c_0 = \frac{1}{a_1 a_0} > 0$$
 $c_2 - c_1 = \frac{-1}{a_2 a_1} < 0$ $c_2 - c_0 = \frac{a_2}{a_2 a_0} > 0$ (4.3)

uma vez que a_2 , q_0 , q_1 e q_2 são todos positivos.

Assim, com (4.3), obtemos

$$c_1 > c_0, \qquad c_2 < c_1, \qquad c_2 > c_0$$

E, daì, $c_0 < c_2 < c_1$.

Considerando, i = 2, i = 3 e i = 4 em (4.1) e (4.2), teremos:

$$c_2 < c_3 < c_1$$

$$c_2 < c_4 < c_3$$

$$c_4 < c_5 < c_3$$

Combinando estas desigualdades temos

$$c_0 < c_2 < c_4 < \dots < c_{2n} < \dots < c_{2n+1} < \dots < c_5 < c_3 < c_1$$

o que conclui a demonstração.

O que acabamos de mostrar é que a sequência dos convergentes de índice par forma uma sequência crescente que é limitada superiormente e que a sequência dos convergentes de índice ímpar forma uma sequência decrescente e limitada inferiormente.

Há um resultado fundamental em Análise que diz que toda sequência crescente e limitada superiormente converge e que toda sequência decrescente e limitada inferiormente também converge.

Sejam, pois, L_I o limite da sequência $c_1, c_3, c_5, ..., c_{2i+1}, ...$ e L_P o limite da sequência $c_0, c_2, c_4, ..., c_{2i}, ...$

Como os números $q_i's$ são calculados através da relação $q_i = a_i q_{i-1} + q_{i-2}$ e os números $a_i (i \ge 2)$ e $q_i (i \ge 1)$ são todos positivos concluímos que a sequência dos $q_i's$ cresce indefinidamente. Isto implica que se tomarmos i = 2j em (4.1), teremos

$$c_{2j} - c_{2j-1} = \frac{1}{q_{2j}q_{2j-1}}$$

o que nos permite concluir que o $\lim_{j\to\infty}(c_{2j}-c_{2j-1})=0$.

Sendo $\lim_{j\to\infty} c_{2j-1} = L_I$ e $\lim_{j\to\infty} c_{2j} = L_P$ concluímos que $L_I = L_P$.

4.3 Aproximação de números irracionais por números racionais

Provamos, a seguir, que o limite L para o qual a sequência dos convergentes converge é, na realidade, o número irracional que deu origem à fração contínua. Embora este fato pareça óbvio ele precisa ser provado. Para isto necessitamos do seguinte resultado.

Proposição 4.4. Para qualquer número real α temos:

$$[a_0, a_1, a_2, ..., a_{i-1}, \alpha] = \frac{\alpha p_{i-1} + p_{i-2}}{\alpha q_{i-1} + q_{i-2}}$$

onde $a_0, a_1, a_2, ...$ é uma sequência infinita de inteiros positivos com a possível exceção de a_0 e as sequências dos p_i 's e q_i 's são dadas por

$$p_{-1} = 1$$
, $p_{-2} = 0$, $q_{-1} = 0$, $q_{-2} = 1$, $p_i = a_i p_{i-1} + p_{i-2}$, $q_i = a_i q_{i-1} + q_{i-2}$, $i \ge 1$.

Demonstração. Para i=0 o resultado deve ser visto como

$$\alpha = \frac{\alpha p_{-1} + p_{-2}}{\alpha q_{-1} + q_{-2}}$$

o qual é verdadeiro pelas condições iniciais.

Para i = 1 temos

$$[a_0, \alpha] = \frac{\alpha p_0 + p_{-1}}{\alpha q_0 + q_{-1}} = \frac{\alpha a_0 + 1}{\alpha} = a_0 + \frac{1}{\alpha}.$$

Estabelecemos, agora, o resultado por indução. Considerando verdadeiro o resultado para $[a_0, a_1, a_2, ..., a_i, \alpha]$ temos

$$[a_0, a_1, a_2, ..., a_i, \alpha] = \left[a_0, a_1, a_2, ..., a_{i-1}, a_i + \frac{1}{\alpha}\right] = \frac{\left(a_i + \frac{1}{\alpha}\right)p_{i-1} + p_{i-2}}{\left(a_i + \frac{1}{\alpha}\right)q_{i-1} + q_{i-2}} = \frac{\left(a_i + \frac{1}{\alpha}\right)p_{i-1} + q_{i-2}}{\left(a_i + \frac{1}{\alpha}\right)q_{i-1} + q_{i-2}} = \frac{\left(a_i + \frac{1}{\alpha}\right)p_{i-1} + q_{i-2}}{\left(a_i + \frac{1}{\alpha}\right)q_{i-1} + q_{i-2}} = \frac{\left(a_i + \frac{1}{\alpha}\right)p_{i-1} + q_{i-2}}{\left(a_i + \frac{1}{\alpha}\right)q_{i-1} + q_{i-2}} = \frac{\left(a_i + \frac{1}{\alpha}\right)p_{i-1} + q_{i-2}}{\left(a_i + \frac{1}{\alpha}\right)q_{i-1} + q_{i-2}} = \frac{\left(a_i + \frac{1}{\alpha}\right)p_{i-1} + q_{i-2}}{\left(a_i + \frac{1}{\alpha}\right)q_{i-1} + q_{i-2}} = \frac{\left(a_i + \frac{1}{\alpha}\right)p_{i-1} + q_{i-2}}{\left(a_i + \frac{1}{\alpha}\right)q_{i-1} + q_{i-2}} = \frac{\left(a_i + \frac{1}{\alpha}\right)p_{i-1} + q_{i-2}}{\left(a_i + \frac{1}{\alpha}\right)q_{i-1} + q_{i-2}} = \frac{\left(a_i + \frac{1}{\alpha}\right)p_{i-1} + q_{i-2}}{\left(a_i + \frac{1}{\alpha}\right)q_{i-1} + q_{i-2}} = \frac{\left(a_i + \frac{1}{\alpha}\right)p_{i-1} + q_{i-2}}{\left(a_i + \frac{1}{\alpha}\right)q_{i-1} + q_{i-2}} = \frac{\left(a_i + \frac{1}{\alpha}\right)p_{i-1} + q_{i-2}}{\left(a_i + \frac{1}{\alpha}\right)q_{i-1} + q_{i-2}} = \frac{\left(a_i + \frac{1}{\alpha}\right)p_{i-1} + q_{i-2}}{\left(a_i + \frac{1}{\alpha}\right)q_{i-1} + q_{i-2}} = \frac{\left(a_i + \frac{1}{\alpha}\right)p_{i-1} + q_{i-2}}{\left(a_i + \frac{1}{\alpha}\right)q_{i-1} + q_{i-2}} = \frac{\left(a_i + \frac{1}{\alpha}\right)p_{i-1} + q_{i-2}}{\left(a_i + \frac{1}{\alpha}\right)q_{i-1} + q_{i-2}} = \frac{\left(a_i + \frac{1}{\alpha}\right)p_{i-1} + q_{i-2}}{\left(a_i + \frac{1}{\alpha}\right)q_{i-1} + q_{i-2}} = \frac{\left(a_i + \frac{1}{\alpha}\right)p_{i-1} + q_{i-2}}{\left(a_i + \frac{1}{\alpha}\right)q_{i-1} + q_{i-2}} = \frac{\left(a_i + \frac{1}{\alpha}\right)p_{i-1} + q_{i-2}}{\left(a_i + \frac{1}{\alpha}\right)q_{i-1} + q_{i-2}} = \frac{\left(a_i + \frac{1}{\alpha}\right)p_{i-1} + q_{i-2}}{\left(a_i + \frac{1}{\alpha}\right)q_{i-1} + q_{i-2}} = \frac{\left(a_i + \frac{1}{\alpha}\right)q_{i-1} + q_{i-2}}{\left(a_i + \frac{1}{\alpha}\right)q_{i-1}} = \frac{\left(a_i + \frac{1}{\alpha}\right)q_{i-1} + q_{i-2}}{\left(a_i + \frac{1}{\alpha}\right)q_{i-1}} = \frac{\left(a_i + \frac{1}{\alpha}\right)q_{i-1} + q_{i-2}}{\left(a_i + \frac{1}{\alpha}\right)q_{i-1}} = \frac{\left(a_i + \frac{1}{\alpha}\right)q_{i-1}}{\left(a_i + \frac{1}{\alpha}\right)q_{i-1}} = \frac{\left(a_$$

$$= \frac{\alpha(a_i p_{i-1} + p_{i-2}) + p_{i-1}}{\alpha(a_i q_{i-1} + q_{i-2}) + q_{i-1}} = \frac{\alpha p_i + p_{i-1}}{\alpha q_i + q_{i-1}}$$

o que completa a prova.

Proposição 4.5. Toda fração contínua infinita $[a_0, a_1, a_2, ...]$ representa um irracional.

Demonstração. Denotando $[a_0, a_1, a_2, ...]$ por α nós observamos, pela Proposição 4.3, que α está entre c_i e c_{i+1} e, portanto, $0 < |\alpha - c_i| < |c_{i+1} - c_i|$.

Multiplicando por q_i esta desigualdade temos

$$0 < |\alpha q_i - p_i| < |c_{i+1}q_i - c_iq_i| < \frac{1}{q_{i+1}}.$$

Supondo α racional, isto é, $\alpha = \frac{a}{b}$, a e b inteiros com b > 0, a desigualdade acima, após a multiplicação por b nos fornece

$$|aq_i - bp_i| < \frac{b}{q_{i+1}}.$$

Como a sequência dos q_i é crescente podemos escolher i suficientemente grande de forma que $b < q_{i+1}$.

Desta forma o inteiro $aq_i - bp_i$ estaria entre 0 e 1, o que é impossível.

4.4 As melhores aproximações

Vejamos agora o comportamento do erro relativo de uma aproximação com convergentes da expansão em frações contínuas de um número real.

Proposição 4.6. Temos, para todo $n \in \mathbb{N}$,

$$\left|\alpha - \frac{p_n}{q_n}\right| \le \frac{1}{q_n q_{n+1}} < \frac{1}{q_n^2}.$$

Além disso

$$\left|\alpha - \frac{p_n}{q_n}\right| < \frac{1}{2q_n^2} \qquad ou \qquad \left|\alpha - \frac{p_{n+1}}{q_{n+1}}\right| < \frac{1}{2q_{n+1}^2}.$$

Demonstração. O número α sempre pertence ao segmento de extremos $\frac{p_n}{q_n}$ e $\frac{p_{n+1}}{q_{n+1}}$ cujo comprimento é

$$\left| \frac{p_{n+1}}{q_{n+1}} - \frac{p_n}{q_n} \right| = \left| \frac{(-1)^n}{q_n q_{n+1}} \right| = \frac{1}{q_n q_{n+1}} \Longrightarrow \left| \alpha - \frac{p_n}{q_n} \right| \le \frac{1}{q_n q_{n+1}} < \frac{1}{q_n^2}.$$

Além disso, se

$$\left|\alpha - \frac{p_n}{q_n}\right| \ge \frac{1}{2q_n^2}$$
 ou $\left|\alpha - \frac{p_{n+1}}{q_{n+1}}\right| \ge \frac{1}{2q_{n+1}^2}$,

então

$$\frac{1}{q_n q_{n+1}} = \left| \alpha - \frac{p_n}{q_n} \right| + \left| \alpha - \frac{p_{n+1}}{q_{n+1}} \right| \ge \frac{1}{2q_n^2} + \frac{1}{2q_{n+1}^2} \Longrightarrow q_{n+1} = q_n,$$

absurdo.

O resultado devido a Hurwitz e Markov a seguir, também aborda o comportamento do erro relativo, e consequentemente da aproximação.

Proposição 4.7 (Hurwitz, Markov). Para todo α irracional e todo inteiro $n \leq 1$, temos

$$\left|\alpha - \frac{p}{q}\right| < \frac{1}{\sqrt{5}q^2}$$

para todo menos um racional

$$\frac{p}{q} \in \left\{ \frac{p_{n-1}}{q_{n-1}}, \frac{p_n}{q_n}, \frac{p_{n+1}}{q_{n+1}} \right\}.$$

Em particular, a desigualdade acima tem infinitas soluções racionais $\frac{p}{q}$.

Demonstração. Suponha que o teorema seja falso. Então, existe α irracional, $n \leq 1$ com $\alpha_n + \beta_n \leq \sqrt{5}$, $\alpha_{n+1} + \beta_{n+1} \leq \sqrt{5}$ e $\alpha_{n+2} + \beta_{n+2} \leq \sqrt{5}$. Devemos portanto ter $\alpha_{n+1} = \alpha_{n+2} = 1$ já que claramente $a_k \leq 2$ para k = n, n+1, n+2 e se algum $a_k = 2$ com k = n+1, n+2, teríamos $\alpha_k + \beta_k \leq 2 + \frac{1}{3} > \sqrt{5}$, absurdo.

Sejam $x = \frac{1}{\alpha_{n+2}}$ e $y = \beta_{n+1}$. As desigualdades acima se traduzem em

$$\frac{1}{1+x} + \frac{1}{y} \le \sqrt{5}$$
, $1+x+y \le \sqrt{5}$ e $\frac{1}{x} + \frac{1}{1+y} \le \sqrt{5}$.

Temos

$$1 + x + y \le \sqrt{5} \Longrightarrow 1 + x \le \sqrt{5} - y \Longrightarrow \frac{1}{1+x} + \frac{1}{y} \ge \frac{1}{\sqrt{5} - y} + \frac{1}{y} = \frac{\sqrt{5}}{y(\sqrt{5} - y)}$$

e portanto

$$y(\sqrt{5}-y) \ge 1 \Longrightarrow y \ge \frac{\sqrt{5}-1}{2}.$$

Por outro lado temos

$$x \le \sqrt{5} - 1 - y \Longrightarrow \frac{1}{x} + \frac{1}{1+y} \le \frac{1}{\sqrt{5} - 1 - y} + \frac{1}{1+y} = \frac{\sqrt{5}}{(1+y)(\sqrt{5} - 1 - y)}$$

e portanto $(1+y)(\sqrt{5}-1-y) \le 1 \Longrightarrow y \le \frac{\sqrt{5}-1}{2}$, e portanto devemos ter $y = \frac{\sqrt{5}-1}{2}$,

o que é absurdo pois $y = \beta_{n+1} = \frac{q_{n-1}}{q_n} \in \mathbb{Q}$.

Em particular provamos que $\left|\alpha - \frac{p}{q}\right| < \frac{1}{\sqrt{5}q^2}$ tem infinitas soluções $\frac{p}{q}$, para todo α irracional. O número $\sqrt{5}$ é o maior com essa propriedade. De fato se $\epsilon > 0$, $\alpha = \frac{1+\sqrt{5}}{2}$ e $\left|\alpha - \frac{p}{q}\right| < \frac{1}{(\sqrt{5}+\epsilon)q^2}$, temos

$$\left| q\left(\frac{1+\sqrt{5}}{2}\right) - p \right| < \frac{1}{(\sqrt{5}+\epsilon)q} \Longrightarrow \left| q\left(\frac{1+\sqrt{5}}{2}\right) - p \right| \left| q\left(\frac{1-\sqrt{5}}{2}\right) - p \right| < \frac{\left|\frac{1-\sqrt{5}}{2} - \frac{p}{q}\right|}{\sqrt{5}+\epsilon},$$

ou seja, $|p^2-pq-q^2|<\frac{\left|\frac{1+\sqrt{5}}{2}-\frac{p}{q}-\sqrt{5}\right|}{\sqrt{5}+\epsilon}$. Se q é grande, $\frac{1}{q^2}$ é pequeno, e $\frac{1+\sqrt{5}}{2}-\frac{p}{q}$ é muito próximo de 0, donde o lado direito da desigualdade é muito próximo de $\frac{\sqrt{5}}{\sqrt{5}+\epsilon}<1$, absurdo, pois $|p^2-pq-q^2|\geq 1$, de fato se $p^2-pq-q^2=0$ teríamos

$$\left(\frac{p}{q}\right)^2 - \left(\frac{p}{q}\right) - 1 = 0 \Longrightarrow \frac{p}{q} \in \left\{\frac{1 + \sqrt{5}}{2}, \frac{1 - \sqrt{5}}{2}\right\},\,$$

o que é absurdo, pois $\frac{p}{q} \in \mathbb{Q}$.

Outra maneira de ver que, para todo $\epsilon > 0$,

$$\left| \frac{1+\sqrt{5}}{2} - \frac{p}{q} \right| < \frac{1}{(\sqrt{5}+\epsilon)q^2}$$

tem apenas um número finito de soluções $\frac{p}{q} \in \mathbb{Q}$ é observar que as melhores aproximações racionais de $\frac{1+\sqrt{5}}{2}$ são os convergentes $\frac{p_n}{q_n}$ de sua fração contínua $[1;1,1,1,\ldots]$, para as quais temos $\left|\frac{1+\sqrt{5}}{2}-\frac{p_n}{q_n}\right|<\frac{1}{(\alpha_{n+1}+\beta_{n+1})q_n^2}$, com $\alpha_{n+1}+\beta_{n+1}$ se aproximando cada vez mais de $[1;1,1,1,\ldots]+[0;1,1,1,\ldots]=\frac{1+\sqrt{5}}{2}+\frac{\sqrt{5}-1}{2}=\sqrt{5}$.

Em consequência das proposições anteriores, segue o resultado abaixo.

Proposição 4.8. Para todo $p, q \in \mathbb{Z}$, com $0 < q < q_{n+1}$ temos $|q_n \alpha - p_n| \le |q\alpha - p|$.

Além disso, se $0 < q < q_n$ a desigualdade acima é estrita.

 $\begin{array}{l} \textit{Demonstração}. \text{ Como } \textit{mdc}(p_n,q_n) = 1, \text{ temos que se } \frac{p}{q} = \frac{p_n}{q_n} \text{ então } p = kp_n \text{ e } q = kq_n \\ \text{para algum inteiro } k \neq 0 \text{ e neste caso o resultado é claro. Assim, podemos supor que } \frac{p}{q} \neq \frac{p_n}{q_n} \text{ de modo que } \left| \frac{p}{q} - \frac{p_n}{q_n} \right| \geq \frac{1}{qq_n} > \frac{1}{q_nq_{n+1}} \text{ já que } q < q_{n+1}. \text{ Assim, } \frac{p}{q} \text{ está fora do intervalo de extremos } \frac{p_n}{q_n} \text{ e } \frac{p_{n+1}}{q_{n+1}} \text{ e portanto} \end{array}$

$$\left| x - \frac{p}{q} \right| \ge \min \left\{ \left| \frac{p}{q} - \frac{p_n}{q_n} \right|, \left| \frac{p}{q} - \frac{p_{n+1}}{q_{n+1}} \right| \right\} \ge \frac{1}{qq_{n+1}}$$

o que implica $|qx - p| \ge \frac{1}{q_{n+1}} \ge |q_nx - p_n|$. Além disso, a igualdade só pode ocorrer se $x = \frac{p_{n+1}}{q_{n+1}}$, donde $a_{n+1} \ge 2$, e $q_{n+1} > 2q_n$, pois numa fração contínua finita, como no algoritmo de Euclides, o último coeficiente a_n é sempre maior do que 1. Nesse caso, se $q < q_n$ teremos

$$\left|x - \frac{p}{q}\right| \ge \left|\frac{p}{q} - \frac{p_n}{q_n}\right| - \left|\frac{p_{n+1}}{q_{n+1}} - \frac{p_n}{q_n}\right| \ge \frac{1}{qq_n} - \frac{1}{q_nq_{n+1}} = \frac{q_{n+1} - q}{qq_nq_{n+1}} > \frac{1}{qq_{n+1}}$$

o que implica $|qx - p| > \frac{1}{q_{n+1}} \ge |q_nx - p_n|$.

E então seguem os próximos resultados.

Proposição 4.9. Para todo $q < q_n$, $\left| \alpha - \frac{p_n}{q_n} \right| < \left| \alpha - \frac{p}{q} \right|$.

Proposição 4.10. Se $|q\alpha - p| < |q'\alpha - p'|$, para todo p' e $q' \ge q$ tais que $\frac{p}{q} \ne \frac{p'}{q'}$, então $\frac{p}{q}$ é um convergente da fração contínua de α .

Demonstração. Tome n tal que $q_n \ge q < q_{n+1}$. Pela proposição, $|q_n \alpha - p_n| \ge |q\alpha - p|$, e portanto $\frac{p}{q} = \frac{p_n}{q_n}$.

 $\mathbf{Proposição} \ \mathbf{4.11.} \ Se \ \left| \alpha - \frac{p}{q} \right| < \frac{1}{2q^2} \ então \ \frac{p}{q} \ \'e \ um \ convergente \ da \ fração \ contínua \ de \ \alpha.$

Demonstração. Seja n tal que $q_n \ge q < q_{n+1}$. Suponha que $\frac{p}{q} \ne \frac{p_n}{q_n}$. Como na demonstração da proposição anterior, $\left| x - \frac{p}{q} \right| \ge \frac{1}{qq_{n+1}}$ e assim $\frac{p}{q}$ está fora do intervalo de extremos $\frac{p_n}{q_n}$ e $\frac{p_{n+1}}{q_{n+1}}$. Temos duas possibilidades:

(a) Se
$$q \ge \frac{q_{n+1}}{2}$$
 então $\left| x - \frac{p}{q} \right| \ge \frac{1}{qq_{n+1}} \ge \frac{1}{2q^2}$, absurdo.

(b) Se
$$q < \frac{q_{n+1}}{2}$$
,

$$\left| x - \frac{p}{q} \right| \ge \left| \frac{p_n}{q_n} - \frac{p}{q} \right| - \left| \frac{p_{n+1}}{q_{n+1}} - \frac{p_n}{q_n} \right| \ge \frac{1}{qq_n} - \frac{1}{q_nq_{n+1}} = \frac{q_{n+1} - q}{qq_nq_{n+1}} > \frac{1}{2qq_n} \ge \frac{1}{2q^2}$$

o que também é um absurdo.

Retomando os cinco convergentes de $\sqrt{2}$ e sua aproximação decimal 1,4142136, podemos analisar o erro relativo, comparando com aproximações decimais. Observe a tabela abaixo:

i	c_i	$\left \sqrt{2}-c_i\right $
0	1	0,4142136
1	$1,5 = \frac{3}{2}$	0,1142136
2	$1, 4 = \frac{7}{5}$	0,0142136
3	$1,4166667 = \frac{17}{12}$	0,0024531
4	$1,4137931 = \frac{41}{29}$	0,0004205

Tabela 4.1: Análise do erro relativo dos convergentes da expansão de $\sqrt{2}$

Observando o quinto convergente da expansão de $\sqrt{2}$ podemos verificar que

$$\left| \sqrt{2} - \frac{41}{29} \right| < \frac{1}{2000} < \left| \sqrt{2} - \frac{141}{100} \right|$$

e isto nos diz que $\frac{41}{29}$ é uma aproximação para $\sqrt{2}$ melhor do que $\frac{141}{100}$, considerando o tamanho do denominador envolvido.

Se tomarmos o próximo convergente (o sexto), conseguiremos uma aproximação melhor ainda:

$$\left| \sqrt{2} - \frac{99}{70} \right| < \frac{1}{13850} < \left| \sqrt{2} - \frac{1414}{1000} \right|,$$

e isso, sem considerar um denominador muito maior do que o anterior (entre os convergentes).

Vejamos agora o comportamento dos convergentes do número π . Na tabela a seguir, vamos fazer como no caso do $\sqrt{2}$.

Para efeito de comparação, consideraremos a aproximação $\pi \cong 3,14159265$.

i	c_i	$ \pi - c_i $
0	3	0,14159265
1	$\frac{22}{7} = 3,14285714$	0,00126449
2	$\frac{333}{106} = 3,14150943$	0,00008322
3	$\frac{355}{113} = 3,14159292$	0,00000027
4	$\frac{103993}{33102} = 3,14159265$	$3,01119026 \times 10^{-9}$

Tabela 4.2: Análise do erro relativo dos convergentes da expansão de π

O quinto convergente, por ter um denominador consideravelmente grande, pode relativizar a propriedade das frações contínuas de apresentar boas aproximações, mas considerando os três convergentes anteriores a ele temos:

$$\left| \pi - \frac{22}{7} \right| < \frac{1}{500} < \left| \pi - \frac{314}{100} \right|$$

$$\left| \pi - \frac{333}{106} \right| < \frac{1}{10000} < \left| \pi - \frac{3141}{1000} \right|$$

$$\left| \pi - \frac{355}{113} \right| < \frac{1}{10000000} < \left| \pi - \frac{314159}{1000000} \right|$$

o que mostra que conseguimos, através as frações contínuas, aproximações de π mais eficientes e com denominadores relativamente pequenos.

Capítulo 5

A Equação de Pell

5.1 Definição

A equação $x^2 - dy^2 = 1$, onde d é um número inteiro positivo, é geralmente conhecida como **equação de Pell**.

Se d é um quadrado perfeito, teríamos algum k inteiro tal que $d=k^2$ e assim,

$$x^{2} - dy^{2} = x^{2} - k^{2}y^{2} = (x + ky)(x - ky) = 1$$

Isto implica em $x + ky = x - ky = \pm 1$.

Assim, por simples inspeção, as únicas soluções desta equação acabam sendo $x=\pm 1$ e y=0.

Desejamos analisar as soluções da equação de Pell quando d não é quadrado perfeito, e portanto \sqrt{d} é um número irracional.

Mas antes, vamos observar a expansão em frações contínuas periódicas, e com qual tipo de número irracional ela se relaciona. Esse fato, nos dará uma ferramenta para encontrar as soluções de $x^2 - dy^2 = 1$, quando d não é um quadrado perfeito.

5.2 Frações contínuas periódicas

Uma fração contínua infinita $[a_0; a_1, a_2, ...]$ é dita **periódica** se existe um inteiro n tal que $a_r = a_{n+r}$ para todos os inteiros r suficientemente grandes. Assim uma fração contínua periódica pode ser escrita na forma

$$[b_0;b_1,b_2,...,b_j,a_0,a_1,...,a_{n-1},a_0,a_1,...,a_{n-1},...] = [b_0;b_1,b_2,...,b_j,\overline{a_0,a_1,...,a_{n-1}}]$$

onde a barra sobre $a_0, a_1, ..., a_{n-1}$ indica que este bloco de inteiros é repetido indefinidamente.

5.3 Irracionais quadráticos

Suponha que

$$f(x) = a_0 + a_1 x + \dots + a_n x^n$$

é um polinômio de grau n com **coeficientes inteiros** $a_0, a_1, ..., a_n$. Então, uma raiz α deste polinômio é dita ser algébrica. Uma vez que todo número racional $\alpha = \frac{a}{b}$ pode ser definido como a raiz de uma equação do primeiro grau bx - a = 0, o conceito de número algébrico é claramente uma generalização do conceito de número racional. Se um dado número algébrico satisfaz uma equação f(x) = 0 de grau n e não satisfaz nenhuma equação de menor grau (com coeficientes inteiros), ele é chamado de número algébrico de grau n. Em particular, os números racionais podem ser definidos como números algébricos de primeiro grau. O número $\sqrt{2}$, sendo uma raiz do polinômio $x^2 - 2$, é um número algébrico do 2° grau ou, como dizemos, um **irracional quadrático**. Irracionais cúbicos, do 4° grau ou de graus superiores são definidos de forma análoga. Todo número não-algébrico é dito **transcendente**. Exemplos de números transcendentes são e e π .

Proposição 5.1. Toda fração contínua periódica representa um número irracional quadrático e todo número irracional quadrático é representado por uma fração contínua periódica.

Demonstração. Seja
$$\alpha = [a_0; a_1, a_2, ..., a_{k_0-1}, \overline{a_{k_0}, a_{k_0+1}, ..., a_{k_0+h-1}}].$$

A primeira afirmação pode ser provada em poucas palavras. Obviamente, os restos da fração contínua periódica satisfazem a relação $r_{k+h} = r_k$, $(k \ge k_0)$.

Portanto, temos, para $k \geq k_0$,

$$\alpha = \frac{p_{k-1}r_k + p_{k-2}}{q_{k-1}r_k + q_{k-2}} = \frac{p_{k+h-1}r_{k+h} + p_{k+h-2}}{q_{k+h-1}r_{k+h} + q_{k+h-2}} = \frac{p_{k+h-1}r_k + p_{k+h-2}}{q_{k+h-1}r_k + q_{k+h-2}},$$

de modo que

$$\frac{p_{k-1}r_k + p_{k-2}}{q_{k-1}r_k + q_{k-2}} = \frac{p_{k+h-1}r_k + p_{k+h-2}}{q_{k+h-1}r_k + q_{k+h-2}}.$$

Assim, o número r_k satisfaz uma equação quadrática com coeficientes inteiros e, consequentemente, é um número irracional quadrático. Mas neste caso, a primeira igualdade mostra que α também é um número irracional.

O inverso é um pouco mais complicado. Suponha que o número α satisfaça a equação quadrática $a\alpha^2 + b\alpha + c = 0$ com coeficientes inteiros. Se escrevemos α em termos de seus

restos de ordem n

$$\alpha = \frac{p_{n-1}r_n + p_{n-2}}{q_{n-1}r_n + q_{n-2}},$$

vemos que r_n satisfaz a equação

$$A_n r_n^2 + B_n r_n + C_n = 0,$$

onde A_n , B_n e C_n são inteiros definidos por

$$A_n = ap_{n-1}^2 + bp_{n-1}q_{n-1} + cq_{n-1}^2,$$

$$B_n = 2ap_{n-1}p_{n-2} + b(p_{n-1}q_{n-2} + p_{n-2}q_{n-1})2cq_{n-1}q_{n-2},$$

$$C_n = ap_{n-2}^2 + bp_{n-2}q_{n-2} + cq_{n-2}^2,$$

para os quais, em particular, segue que $C_n = A_{n-1}$.

Com estas fórmulas, é fácil verificar diretamente que

$$B_n^2 - 4A_nC_n = (b^2 - 4ac)(p_{n-1}q_{n-2} + p_{n-2}q_{n-1})^2 = (b^2 - 4ac)(-1)^2 = b^2 - 4ac,$$

isto é, que o discriminante da equação de r_n é o mesmo para todo n e é igual ao discriminante da equação de α . Além disso, uma vez que

$$\left| \alpha - \frac{p_{n-1}}{q_{n-1}} \right| < \frac{1}{q_{n-1}^2},$$

segue que

$$p_{n-1} = \alpha q_{n-1} + \frac{\delta_{n-1}}{q_{n-1}} \quad (|\delta_{n-1}| < 1).$$

Portanto, a fórmula de A_n nos dá

$$A_n = a \left(\alpha q_{n-1} + \frac{\delta_{n-1}}{q_{n-1}} \right)^2 + b \left(\alpha q_{n-1} + \frac{\delta_{n-1}}{q_{n-1}} \right) q_{n-1} + c q_{n-1}^2 =$$

$$= (a\alpha^2 + b\alpha + c) q_{n-1}^2 + 2a\alpha \delta_{n-1} + a \frac{\delta_{n-1}^2}{q_{n-1}^2} + b\delta_{n-1},$$

para o qual, com base na equação de α , temos

$$|A_n| = \left| 2a\alpha \delta_{n-1} + a \frac{\delta_{n-1}^2}{q_{n-1}^2} + b\delta_{n-1} \right| < 2|a\alpha| + |a| + |b|,$$

e, com base em $C_n = A_{n-1}$,

$$|C_n| = |A_{n-1}| < 2|a\alpha| + |a| + |b|.$$

Assim, os coeficientes A_n e C_n na equação de r_n são limitados em módulo e, portanto, podem assumir apenas um número finito de valores distintos quando n varia. Então, segue que B_n deve tomar apenas um número finito de valores distintos. Assim, quando n aumenta de 1 a ∞ , encontraremos somente um número finito de equações quadráticas distintas para r_n . Mas, em qualquer caso, r_n pode tomar apenas um número finito de valores distintos, e portanto, para k e k devidamente escolhidos, k0.

Isto mostra que a representação em fração contínua de α é periódica e, assim, prova a segunda afirmação da proposição.

As expansões em frações contínuas cujas expressões têm a forma $[\overline{a_0, a_1, ..., a_n}]$ são denominadas **puramente periódicas**. Elas estão associadas a um tipo especial de irracionais quadráticos.

O irracional quadrático α dado por $A+B\sqrt{d}$, A e B racionais, é dito **reduzido** se α é maior do que 1 e se seu conjugado α' , dado por $A-B\sqrt{d}$, está entre -1 e 0.

Proposição 5.2. A expansão em fração contínua do irracional quadrático α é puramente periódica se, e somente se, α é um irracional quadrático reduzido.

Demonstração. Primeiro, assumimos que $\alpha > 1$ e $-1 < \alpha' < 0$. Escrevemos α_0 para α e sendo $a_0 = \lfloor \alpha \rfloor$, tomamos os conjugados para obter

$$\frac{1}{\alpha'_{i+1}} = \alpha'_i - a_i.$$

Agora $a_i \ge 1$ para todo i, mesmo para i=0, uma vez que $\alpha_0>1$. Por isso, se $\alpha_0'<0$ então

$$\frac{1}{\alpha'_{i+1}} < -1,$$

e temos $-1 < \alpha'_{i+1} < 0$. Uma vez que $-1 < \alpha'_0 < 0$ vemos, por indução matemática, que $-1 < \alpha'_i < 0$ é válido para todo $i \ge 0$. Então, uma vez que

$$\alpha_i' = \frac{1}{\alpha_{i+1}'} + a_i,$$

temos

$$0 < -\frac{1}{\alpha'_{i+1}} - a_i < 1, \qquad a_i = \left\lfloor -\frac{1}{\alpha'_{i+1}} \right\rfloor.$$

Agora α é um irracional quadrático, então existem inteiros j e k, com 0 < j < k, tais

que $\alpha_j = \alpha_k$. Então, temos $\alpha'_j = \alpha'_k$ e

$$a_{j-1} = \left[-\frac{1}{\alpha_i'} \right] = \left[-\frac{1}{\alpha_k'} \right] = a_{k-1}$$

$$\alpha_{j-1} = a_{j-1} + \frac{1}{\alpha_j} = a_{k-1} + \frac{1}{\alpha_k} = \alpha_{k-1}.$$

Assim, $\alpha_j = \alpha_k$ implica em $\alpha_{j-1} = \alpha_{k-1}$. Uma iteração j-vezes desta implicação nos dá $\alpha_0 = \alpha_{k-j}$, e temos $\alpha = \alpha_0 = [\overline{a_0, a_1, ..., a_{k-j-1}}]$.

Para provar a recíproca, vamos assumir que α é puramente periódica, quer dizer $\alpha = [\overline{a_0, a_1, ..., a_{k-j-1}}]$, onde $a_0, a_1, ..., a_{k-j-1}$ são inteiros positivos. Então $\alpha > a_0 \ge 1$. Também, temos

$$\alpha = [a_0, a_1, ..., a_{n-1}, \alpha] = \frac{\alpha h_{n-1} + h_{n-2}}{\alpha k_{n-1} + k_{n-2}}.$$

Assim, α satisfaz a equação

$$f(x) = x^{2}k_{n-1} + x(k_{n-2} - h_{n-1}) - h_{n-2} = 0.$$

Esta equação quadrática tem duas raízes, α e seu conjugado α' . Uma vez que $\alpha > 1$, precisamos apenas provar que f(x) tem uma raiz entre -1 e 0, a fim de estabelecer que $-1 < \alpha' < 0$. Devemos fazer isto mostrando que f(-1) e f(0) têm sinais opostos. Primeiro, observamos que $f(0) = -h_{n-2} < 0$, uma vez que $a_i > 0$ para $i \ge 0$. A seguir, vemos que para $n \ge 1$

$$f(-1) = k_{n-1} - k_{n-2} + h_{n-1} - h_{n-2} = (k_{n-2} + h_{n-2})(a_{n-1} - 1) + k_{n-3} + h_{n-3} \ge k_{n-3} + h_{n-3} > 0.$$

Isto completa a prova.

5.4 A fração contínua de \sqrt{d}

Se d > 0 é um inteiro que não é quadrado perfeito, a fração contínua para \sqrt{d} tem uma forma interessante. Primeiro note que \sqrt{d} é maior do que 1, e portanto, seu conjugado não pode estar entre -1 e 0, por isso \sqrt{d} não é reduzido, e sua expressão

$$\sqrt{d} = a_0 + \frac{1}{a_1} + \dots + \frac{1}{a_{n-1}} + \frac{1}{a_n} + \dots$$

não pode ser puramente periódica. Por outro lado, uma vez que a_0 é o maior inteiro menor do que \sqrt{d} , o número $\sqrt{d} + a_0$ é maior do que 1, e seu conjugado $-\sqrt{d} + a_0$, está entre -1 e 0, de modo que $\sqrt{d} + a_0$ é reduzido. Adicionando a_0 a ambos os lados da igualdade acima, temos

$$\sqrt{d} + a_0 = 2a_0 + \frac{1}{a_1} + \frac{1}{a_2} + \dots ,$$

e uma vez que esta expansão é puramente periódica, ela deve ter a forma

$$\alpha = \sqrt{d} + a_0 = 2a_0 + \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_{n-1}} + \frac{1}{2a_0} + \frac{1}{a_1} + \dots$$

Consequentemente, a expansão para \sqrt{d} é

$$\sqrt{d} = a_0 + \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_{n-1}} + \frac{1}{2a_0} + \frac{1}{a_1} + \dots = \left[a_0; \overline{a_1, a_2, \dots, a_{n-1}, 2a_0}\right].$$

onde o período começa depois do primeiro termo e termina com o termo $2a_0$. Aqui n denota o comprimento do menor periódo na expansão de \sqrt{d} .

5.5 Aplicação de convergentes na resolução da equação de Pell

A expansão em frações contínuas para \sqrt{d} fornece todas as ferramentas que precisamos para resolver a equação de Pell $x^2-dy^2=1$. Sabemos que

$$\sqrt{d} = a_0 + \frac{1}{a_1} + \dots + \frac{1}{a_{n-1}} + \frac{1}{2a_0} + \frac{1}{a_1} + \dots = a_0 + \frac{1}{a_1} + \dots + \frac{1}{a_{n-1}} + \frac{1}{\alpha_n}.$$

onde

$$\alpha_n = 2a_0 + \frac{1}{a_1} + \dots = \sqrt{d} + a_0.$$

De novo, usamos o fato de que

$$\sqrt{d} = \frac{\alpha_n p_{n-1} + p_{n-2}}{\alpha_n q_{n-1} + q_{n-2}},$$

onde p_{n-1} , p_{n-2} , q_{n-1} e q_{n-2} são calculados dos dois convergentes $c_{n-1} = \frac{p_{n-1}}{q_{n-1}}$ e $c_{n-2} = \frac{p_{n-2}}{q_{n-2}}$ que vêm imediatamente antes do termo $2a_0$ no desenvolvimento acima. Substituindo

 α_n , produzimos

$$\sqrt{d} = \frac{(\sqrt{d} + a_0)p_{n-1} + p_{n-2}}{(\sqrt{d} + a_0)q_{n-1} + q_{n-2}};$$

então, multiplicando ambos os lados pelo denominador, temos

$$\sqrt{d}(\sqrt{d} + a_0)q_{n-1} + q_{n-2}\sqrt{d} = (\sqrt{d} + a_0)p_{n-1} + p_{n-2}$$

que é equivalente a

$$dq_{n-1} + (a_0q_{n-1} + q_{n-2})\sqrt{d} = (a_0p_{n-1} + p_{n-2}) + p_{n-1}\sqrt{d}.$$

Agora, isto é uma equação da forma $a + b\sqrt{d} = c + d\sqrt{d}$, onde a, b, c e d são inteiros e \sqrt{d} é irracional, e isto implica que a = c e b = d. Portanto, a última equação exige que $dq_{n-1} = a_0p_{n-1} + p_{n-2}$ e $a_0q_{n-1} + q_{n-2} = p_{n-1}$.

Resolvendo estas equações para p_{n-2} e q_{n-2} em termos de p_{n-1} e q_{n-1} , encontramos que

$$p_{n-2} = dq_{n-1} - a_0 p_{n-1}$$
 e $q_{n-2} = p_{n-1} - a_0 q_{n-1}$.

Mas, sabemos que $p_{n-1}q_{n-2}-q_{n-1}p_{n-2}=(-1)^{n-1}$, e com os valores de p_{n-2} e q_{n-2} , esta equação tem a forma

$$p_{n-1}(p_{n-1} - a_0 q_{n-1}) - q_{n-1}(dq_{n-1} - a_0 p_{n-1}) = (-1)^{n-1};$$

isto é,

$$p_{n-1}^2 - dq_{n-1}^2 = (-1)^{n-1}$$
.

Se n é impar, a equação anterior torna-se $p_{n-1}^2 - dq_{n-1}^2 = (-1)^{n-1} = 1$, e portanto, uma solução particular da equação de Pell $x^2 - dy^2 = 1$ é $x_1 = p_{n-1}$ e $y_1 = q_{n-1}$.

Se n é par, então $p_{n-1}^2 - dq_{n-1}^2 = (-1)^{n-1} = -1$, e $x_1 = p_{n-1}$ e $y_1 = q_{n-1}$ dá uma solução particular da equação $x^2 - dy^2 = -1$.

Se n é par e ainda desejarmos uma solução da equação $x^2 - dy^2 = 1$, avançamos para o **segundo período** na expansão de \sqrt{d} , isto é, além do termo a_{n-1} onde ele ocorre pela segunda vez.

Exemplo 5.1. Encontre uma solução particular da equação $x^2 - 11y^2 = -1$.

Solução: Aqui d=11, e a expansão em fração contínua de $\sqrt{11}$ é dada por

$$\sqrt{11} - 3 = \frac{(\sqrt{11} - 3)(\sqrt{11} + 3)}{\sqrt{11} + 3} = \frac{2}{\sqrt{11} + 3} = \frac{1}{\frac{\sqrt{11} + 3}{2}}$$

$$\sqrt{11} - 3 = \frac{1}{\frac{6 + \sqrt{11} - 3}{2}} = \frac{1}{3 + \frac{\sqrt{11} - 3}{2}} = \frac{1}{3 + \frac{1}{\sqrt{11} + 3}}$$

$$\sqrt{11} - 3 = \frac{1}{3 + \frac{1}{6 + \sqrt{11} - 3}} = \frac{1}{3 + \frac{1}{6 + \frac{1}{\sqrt{11} - 3}}}$$

$$\sqrt{11} = 3 + \frac{1}{3 + \frac{1}{6 + \frac{1}{\sqrt{11} - 3}}}$$

$$\sqrt{11} = 3 + \frac{1}{3 + \frac{1}{6 + \sqrt{11} - 3}}$$

isto é,
$$\sqrt{11} = [3; 3, 6, 3, 6, ...] = [3; \overline{3, 6}] = [a_0; \overline{a_1, 2a_0}].$$

Isto mostra que $a_{n-1}=a_1$, de modo que n=1, número ímpar. O cálculo dos convergentes mostra que $c_1=\frac{10}{3}$, de modo que $x_1=p_1=10$ e $y_1=q_1=3$, e

$$x_1^2 - 11y_1^2 = 10^2 - 11 \cdot 3^2 = 100 - 99 = 1;$$

portanto, $x_1 = 10$ e $y_1 = 3$ é solução particular da equação dada.

5.6 Obtendo outras soluções da equação de Pell

Vimos na seção anterior que a equação de Pell $x^2 - dy^2 = 1$, sendo d um inteiro positivo que não é quadrado perfeito, sempre pode ser resolvida. Porém, o método apresentado sempre produzirá a **menor solução positiva (mínima)**; isto é, sempre produzirá os dois menores inteiros $x_1 > 0$ e $y_1 > 0$ tais que $x_1^2 - dy_1^2 = 1$.

Uma vez que a menor solução positiva tenha sido obtida, podemos gerar sistematicamente todas as outras soluções positivas.

Proposição 5.3. Se (x_1, y_1) é a menor solução positiva de $x^2 - dy^2 = 1$, então todas as outras soluções positivas (x_n, y_n) podem ser obtidas da equação

$$x_n + y_n \sqrt{d} = \left(x_1 + y_1 \sqrt{d}\right)^n \tag{5.1}$$

definindo, por sua vez, $n = 1, 2, 3, \dots$

Os valores de x_n e y_n são obtidas expandindo o termo $\left(x_1 + y_1\sqrt{d}\right)^n$ pelo teorema binomial e igualando as partes racionais e as partes puramente irracionais da equação resultante. Por exemplo, se (x_1, y_1) é a menor solução positiva de $x^2 - dy^2 = 1$, então a solução (x_2, y_2) pode ser encontrada tomando n = 2 na igualdade acima. Isto dá

$$x_2 + y_2\sqrt{d} = (x_1 + y_1\sqrt{d})^2 = x_1^2 + 2x_1y_1\sqrt{d} + dy_1^2 = (x_1^2 + dy_1^2) + (2x_1y_1)\sqrt{d}.$$

de modo que $x_2 = x_1^2 + dy_1^2$ e $y_2 = 2x_1y_1$.

Usando estes valores, um cálculo direto mostra que

$$x_2^2 - dy_2^2 = (x_1^2 + dy_1^2)^2 - d(2x_1y_1)^2 = x_1^4 + 2dx_1^2y_1^2 + d^2y_1^4 - 4dx_1^2y_1^2 =$$

$$= x_1^4 - 2dx_1^2y_1^2 + d^2y_1^4 = (x_1^2 - dy_1^2)^2 = 1^2 = 1,$$

Isto implica que (x_2, y_2) também é uma solução de $x^2 - dy^2 = 1$, já que por suposição (x_1, y_1) é uma solução de $x^2 - dy^2 = 1$.

É fácil mostrar que se x_n e y_n são calculados pela equação (5.1), então $x_n^2 - dy_n^2 = 1$. Temos,

$$x_n + y_n \sqrt{d} = \left(x_1 + y_1 \sqrt{d}\right) \left(x_1 + y_1 \sqrt{d}\right) \dots \left(x_1 + y_1 \sqrt{d}\right),$$

onde existem n fatores no lado direito da expressão. Uma vez que o conjugado de um produto é o produto dos conjugados, isto dá

$$x_n - y_n \sqrt{d} = \left(x_1 - y_1 \sqrt{d}\right) \left(x_1 - y_1 \sqrt{d}\right) \dots \left(x_1 - y_1 \sqrt{d}\right),$$

ou

$$x_n - y_n \sqrt{d} = \left(x_1 - y_1 \sqrt{d}\right)^n. \tag{5.2}$$

Agora fatoramos $x_n^2 - dy_n^2$ e usamos as duas igualdades (5.1) e (5.2):

$$x_n^2 - dy_n^2 = \left(x_n + y_n\sqrt{d}\right)\left(x_n - y_n\sqrt{d}\right) = \left(x_1 + y_1\sqrt{d}\right)^n \left(x_1 - y_1\sqrt{d}\right)^n = \left(x_1^2 - dy_1^2\right)^n = 1.$$

Assim, x_n e y_n são soluções da equação $x^2 - dy^2 = 1$.

Exemplo 5.2. No Exemplo 5.1, encontramos que $x_1 = 10$ e $y_1 = 3$ é uma solução (mínima) da equação $x^2 - 11y^2 = 1$. A segunda solução (x_2, y_2) pode ser obtida definindo

n=2 na equação (5.1); isto dá

$$x_2 + y_2\sqrt{11} = (10 + 3\sqrt{11})^2 = 100 + 60\sqrt{11} + 99 = 199 + 60\sqrt{11},$$

que implica que $x_2 = 199$ e $y_2 = 60$. Estes valores satisfazem a equação $x^2 - 11y^2 = 1$, uma vez que

$$199^2 - 11 \cdot 60^2 = 39601 - 39600 = 1.$$

A terceira solução (x_3, y_3) é dada pela equação

$$x_2 + y_2\sqrt{11} = (10 + 3\sqrt{11})^3 = 1000 + 900\sqrt{11} + 2970 + 297\sqrt{11} = 3970 + 1197\sqrt{11},$$

de modo que $x_3=3970\ e\ y_3=1197.$ Isto é verdade, pois

$$3970^2 - 11 \cdot 1197^2 = 15760900 - 15760899 = 1.$$

Capítulo 6

Os aspectos dinâmicos das frações contínuas

A representação decimal de números reais está intimamente ligada à função $f:[0,1) \Rightarrow [0,1)$ dada por $f(x) = \{10x\} = 10x - \lfloor 10x \rfloor$, mais precisamente, à **dinâmica** da função f. Aqui, a notação $\{x\}$ representa a parte fracionária de x.

Por dinâmica da função f queremos dizer o estudo de suas composições sucessivas: para cada ponto $x \in [0, 1)$, estamos interessados na sequência $x, f(x), f(f(x)), ... \in [0, 1)$, cujos termos são os chamados **iterados** sucessivos da f.

De fato, se $x \in [0,1)$ tem representação decimal $0, a_1 a_2 a_3 ...$, então $a_1 = \lfloor 10x \rfloor$ e $f(x) = 0, a_2 a_3 a_4 ...$ Assim, definindo $f^1 = f$ e $f^{n+1} = f(f^n(x))$, temos $f^n(x) = 0, a_{n+1} a_{n+2} a_{n+3} ...$ para todo $n \ge 1$.

Assim, por exemplo, se $x=\frac{1}{9}=0,111...$, temos f(x)=0,111...=x (nesse caso, temos em $x=\frac{1}{9}$ um **ponto fixo** de f); se $x=\frac{5}{33}=0,151515...$, temos f(x)=0,515151... e f(f(x))=0,151515...=x (nesse caso temos em $x=\frac{5}{33}$ um **ponto periódico** de período 2 de f) e, se $x\in[0,1)$ é irracional, os seus iterados por f serão todos distintos, pois sua representação decimal não será periódica a partir de nenhum dígito.

Já a representação em frações contínuas está intimamente ligada à dinâmica de uma função, também conhecida como **transformação de Gauss**.

A transformação de Gauss g é definida por

$$g:(0,1)\Rightarrow [0,1),$$
 dada por $g(x)=\left\{\frac{1}{x}\right\}=\frac{1}{x}-\left\lfloor\frac{1}{x}\right\rfloor$

onde se $x = [0; a_1, a_2, a_3, ...] \in (0, 1)$, então $a_1 = \left\lfloor \frac{1}{x} \right\rfloor$ e $g(x) = [0; a_2, a_3, a_4, ...]$. Assim, definindo, como antes $g^1 = g$ e $g^{n+1} = g(g^n)$ para todo $n \geq 1$, temos $g^n(x) = [0; a_{n+1}, a_{n+2}, a_{n+3}, ...]$, para todo $n \geq 1$.

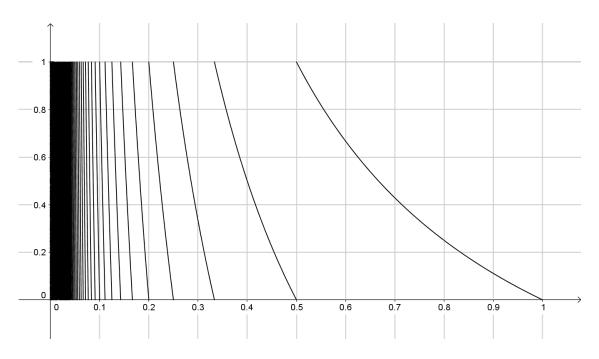


Figura 6.1: Gráfico da transformação de Gauss

Relacionaremos agora a transfromação de Gauss e a expansão em frações contínuas de um número racional. Considere $x=[0;a_1,a_2,...,a_k]$ e lembre que a construção no capítulo 3 implica que se um número racional x verifica $x=[0;a_1,a_2,...,a_k]$ então $r_{k+1}=0$ e $r_0,r_1,...,r_k$ são diferentes de zero. Escrevemos

$$x = g_0 = \frac{r_1}{r_0}, \quad g_1 = \frac{r_2}{r_1}, \quad ..., \quad g_{k-1} = \frac{r_k}{r_{k-1}}, \quad g_k = \frac{r_{k+1}}{r_k} = 0.$$

Lembrando a definição dos a_n e dos r_n obtemos,

$$r_0 = a_1 r_1 + r_2, \quad \frac{r_0}{r_1} = \frac{1}{x} = a_1 + g_1 = \left\lfloor \frac{1}{x} \right\rfloor = g(x).$$

Além disso,

$$a_1 = \left\lfloor \frac{r_0}{r_1} \right\rfloor = \left\lfloor \frac{1}{x} \right\rfloor = \left\lfloor \frac{1}{g^0(x)} \right\rfloor.$$

Suponha agora indutivamente que $g^j(x) = g_j$, que a_j e r_j estão definidos e que $a_j = \left\lfloor \frac{1}{g^{j-1}(x)} \right\rfloor$, para todo $1 \leq j \leq n < k$.

Escrevemos (usando a divisão euclidiana) $r_n = a_{n+1}r_{n+1} + r_{n+2}$ e observamos que

$$a_{n+1} = \left| \frac{r_n}{r_{n+1}} \right| = \left| \frac{1}{g_n} \right| = \left| \frac{1}{g^n(x)} \right|.$$

Logo,

$$g_{n+1} = \frac{r_{n+2}}{r_{n+1}} = \frac{r_n}{r_{n+1}} - a_{n+1} = \frac{r_n}{r_{n+1}} - \left| \frac{r_n}{r_{n+1}} \right|.$$

Por outro lado, pela hipótese de indução e das expressões acima,

$$g^{n+1}(x) = g(g^n(x)) = g(g_n) = g\left(\frac{r_{n+1}}{r_n}\right) = \frac{r_n}{r_{n+1}} - \left\lfloor\frac{r_n}{r_{n+1}}\right\rfloor = g_{n+1}.$$

Assim, obtemos das expressões acima que $g^n(x) = g_n$ e que $a_n = \left\lfloor \frac{1}{g^{n-1}(x)} \right\rfloor$ para todo n.

Estas expressões relacionam (no caso racional, até o momento) os quocientes a_i de um número racional x e os seus iterados pela transformação de Gauss:

$$x = [a_0; a_1, ..., a_k],$$
 $a_n = \left\lfloor \frac{1}{g^{n-1}(x)} \right\rfloor,$ $n = 1, ..., k.$

No caso em que x é racional as sequências dos quocientes e dos convergentes são finitas, e finaliza na etapa n-ésima quando $x = [0; a_1, ..., a_n]$. Também observamos que no caso racional os quocientes $a'_i s$ obtidos são os mesmos que os dados pelo Algoritmo da Divisão.

Finalmente, quando escrevemos $\frac{p_n}{q_n}$ expressamos duas coisas, um número racional e uma representação dele onde p_n e q_n são relativamente primos (sem divisor comum diferente de um).

Um número $x \in (0,1)$ é irracional se, e somente se, g(x) é irracional. Portanto, um

número x é irracional se, e somente se, $g^n(x)$ é irracional (logo não nulo) para todo $n \ge 0$.

O ponto chave é que os quocientes a_n da expansão em frações contínuas de um número $x \in [0,1)$ estão determinados pela sua órbita positiva $(g^i(x))_{i\geq 0}$ pela transformação de Gauss segundo a seguinte fórmula

$$a_n = \left\lfloor \frac{1}{g^n(x)} \right\rfloor, \ n \ge 0,$$

onde definimos indutivamente $g^{i+1}(x) = g(g^i(x))$. Esta relação permite fazer a ponte entre as expansões em frações contínuas e a dinâmica (estudo das iterações da transformação de Gauss).

A cosntrução anterior sugere a seguinte notação, dado $x \in [0,1)$ escrevemos

$$a_1 = \left\lfloor \frac{1}{x} \right\rfloor, \qquad a_2 = \left\lfloor \frac{1}{g(x)} \right\rfloor$$

e definimos de forma indutiva, para $n \ge 1$,

$$a_n = a_1(g^{n-1}(x)) = \left| \frac{1}{g^{n-1}(x)} \right|.$$

Pelas definições de g(x) e a_1 temos

$$x = \frac{1}{a_1 + g(x)}.$$

Repetindo o processo,

$$g(x) = \frac{1}{a_1(g(x)) + g(g(x))} = \frac{1}{a_2 + g^2(x)}.$$

Portanto, indutivamente obtemos

$$x = \frac{1}{a_1 + \dots + \frac{1}{a_{n-1} + \frac{1}{a_n + g^n(x)}}},$$

isto é,

$$x = [0; a_1, a_2, ..., a_n + g^n(x)].$$

Quando x é um número real qualquer, escolhemos $a_0 = \lfloor x \rfloor \in \mathbb{Z}$. Portanto, $x - a_0 \in [0, 1)$. Aplicando o processo anterior a $x - a_0$ temos que

$$x = \lfloor x \rfloor + [a_1(x - \lfloor x \rfloor), ..., a_n(x - \lfloor x \rfloor) + g^n(x - \lfloor x \rfloor)].$$

Escrevemos $a_0 = \lfloor x \rfloor$, $a_i = a_i(x - \lfloor x \rfloor)$, $i \ge 1$, e obtemos

$$x = a_0(x) + [a_1(x), a_2(x), ...a_n(x) + g^n(x - \lfloor x \rfloor)].$$

Assim, dado um número x irracional temos uma sequência $(a_k)_{k\geq 0}$ infinita de números racionais $([a_0;a_1,...,a_k])_{k\geq 0}$.

Finalizamos este capítulo, lembrando alguns números cuja expansão em frações contínuas foi abordada neste trabalho, e observamos que segundo a transformação de Gauss:

- Os números $\sqrt{2}-1=[0;2,2,2,...]$ e $\phi-1=\frac{\sqrt{5}-1}{2}=[0;1,1,1,...]$ são pontos fixos.
- O número $\sqrt{3}-1=[0;1,2,1,2,1,2,\ldots]$ é um ponto periódica de período 2. Podemos também dizer que $\sqrt{3}-1$ tem uma órbita de ciclo 2 formada por ele mesmo e o número $\frac{\sqrt{3}-1}{2}$.
- Os números π e e possuem órbitas sem ciclo ou que "passeiam" pelo intervalo (0,1).
- Os números racionais possuem órbitas que vão morrer no zero.

Capítulo 7

Atividades para o Ensino Básico

Neste capítulo, apresentaremos algumas atividades a serem aplicadas com alunos de Ensino Médio, com o objetivo de apresentar a expansão em frações contínuas e suas principais características.

7.1 Uma (nova) forma de representar números reais

Veremos nas próximas páginas uma forma de representar números reais que é pouco conhecida, mas que possui características muito interessantes.

Começamos, tomando um número racional: $\frac{65}{12}$. Vamos representá-lo de uma forma diferente.

- Primeiro dividimos 65 por 12, e obtemos $65 = 12 \cdot 5 + 5$. Assim, podemos escrever

$$\frac{65}{12} = \frac{12 \cdot 5 + 5}{12} = 5 + \frac{5}{12}$$

- Da mesma forma, como $12 = 5 \cdot 2 + 2$, temos

$$\frac{65}{12} = 5 + \frac{1}{\frac{12}{5}} = 5 + \frac{1}{2 + \frac{2}{5}}$$

- Também, como $5 = 2 \cdot 2 + 1$, temos

$$\frac{65}{12} = 5 + \frac{1}{2 + \frac{1}{\frac{5}{2}}} = 5 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2}}}$$

- Como 2 dividido por 1 dá resto 0, paramos o processo.

Esta forma de representar o número $\frac{65}{12}$ é denominada **representação ou expansão** em frações contínuas.

Para facilitar a apresentação podemos escrever para a expansão de $\frac{65}{12}$:

$$\frac{65}{12} = 5 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$$

ou

$$\frac{65}{12} = [5; 2, 2, 2].$$

A primeira forma alternativa já reduz a escrita, mas daremos preferência para a segunda forma.

Vejamos como é expansão em frações contínuas do número $\frac{114}{235}$:

$$\frac{114}{235} = \frac{1}{\frac{235}{114}} = \frac{1}{2 + \frac{7}{114}} = \frac{1}{2 + \frac{1}{\frac{114}{7}}} = \frac{1}{2 + \frac{1}{16 + \frac{2}{7}}} = \frac{1}{2 + \frac{1}{16 + \frac{1}{\frac{7}{2}}}} = \frac{1}{2 + \frac{1}{16 + \frac{1}{\frac{1}{2}}}} = \frac{1}{2 + \frac{1}{16 + \frac{1}{\frac{1}{2}}}}$$

Assim,
$$\frac{114}{235} = [0; 2, 16, 3, 2].$$

Atividade 1: Expresse os seguintes racionais sob a forma de fração contínua:

a)
$$\frac{11}{7}$$
 b) $\frac{34}{21}$ c) $\frac{21}{34}$

É claro que podemos ter a expansão em frações contínuas para números racionais negativos, por exemplo $-\frac{51}{23}$. Mas para isso, precisamos "arrumar" o número dado:

$$-\frac{51}{23} = \frac{-69+18}{23} = -3 + \frac{18}{23}$$

Agora, podemos seguir na expansão de $\frac{18}{23}$:

$$-\frac{51}{23} = -3 + \frac{1}{\frac{23}{18}} = -3 + \frac{1}{1 + \frac{5}{18}} = -3 + \frac{1}{1 + \frac{1}{\frac{18}{5}}} = -3 + \frac{1}{1 + \frac{1}{3 + \frac{3}{5}}} = -3 + \frac{1}{1 + \frac{1}{3 + \frac{1}{5}}} = -3 + \frac{1}{1 + \frac{1}{\frac{1}{5}}} = -3 + \frac{1}{1 + \frac{1}{1 + \frac{1}{5}}} = -3 + \frac{1}{1 + \frac{$$

$$= -3 + \frac{1}{1 + \frac{1}{3 + \frac{1}{1 + \frac{2}{3}}}} = -3 + \frac{1}{1 + \frac{1}{3 + \frac{1}{1 + \frac{1}{3}}}} = -3 + \frac{1}{1 + \frac{1}{3 + \frac{1}{1 + \frac{1}{2}}}}$$

Assim,
$$-\frac{51}{23} = [-3; 1, 3, 1, 1, 2].$$

Aqui cabe uma observação importante: para "arrumar" o número racional negativo dado, tomamos o menor múltiplo do denominador que seja maior do que o numerador. Com isso, o primeiro termo da expansão em frações contínuas pode ser qualquer número inteiro.

Atividade 2: Expresse os seguintes racionais sob a forma de fração contínua:

a)
$$-\frac{31}{12}$$
 b) $-\frac{12}{31}$ c) $-\frac{7}{40}$

Agora, vamos inverter o processo: dada uma expansão em frações contínuas descobrir qual número racional está relacionado a ela.

Tomamos então para isso, a expansão [2; 1, 4].

Sabemos, pelo que foi definido anteriormente, que se um número x é tal que x=[2;1,4] então temos

$$x = 2 + \frac{1}{1 + \frac{1}{4}}$$

assim, aplicando as operações pertinentes, obtemos

$$x = 2 + \frac{1}{\frac{5}{4}} = 2 + \frac{4}{5} = \frac{14}{5}$$

Logo, o número racional que possui a expansão [2; 1, 4] é o $\frac{14}{5}$.

Atividade 3: Encontre o número racional representado sob a forma de fração contínua em cada item abaixo:

a)
$$[1; 2, 3, 4]$$
 b) $[0; 6, 5]$ c) $[-3; 6, 1, 7]$

Agora, podemos escrever que uma fração contínua simples finita é uma expressão da forma

$$a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \dots + \frac{1}{a_n}}}}$$

Que pode ser denotada por $[a_0; a_1, a_2, a_3, ..., a_n]$, onde $a_1, a_2, a_3, ...$ são números inteiros positivos e a_0 , um inteiro qualquer. Os a_i 's são chamados de quocientes parciais da fração contínua.

7.2 As frações contínuas e o algoritmo de Euclides para o mdc

Em vista das expansões em frações contínuas de alguns números racionais obtidas na seção anterior, nos parecem naturais as seguintes questões:

- Um número racional quando respresentado por uma fração contínua apresenta sempre uma expansão finita?
- Se temos uma fração contínua finita podemos afirmar ser esta a representação de um número racional?

Para responder a estas duas perguntas apresentaremos um teorema, que pode ser demonstrado com os argumentos da divisão euclidiana e que tem no algoritmo de Euclides para o obter o máximo divisor comum (daqui em diante, apenas mdc) um grande auxílio.

Antes porém, vamos relembrar a divisão euclidiana, que pode ser proposta assim:

Teorema. Dados dois inteiros p e q, com $q \neq 0$, existem um único par de inteiros a e r tais que

$$p = aq + r$$
 $com 0 < r < |q|,$

onde a é chamado de quociente e r, de resto.

Por isso, quando fizemos a primeira divisão na seção anterior, encontramos 5 e 5 tais que $65 = 12 \cdot 5 + 5$, que são únicos para a divisão euclidiana. Da mesma forma, 2 e 2 na segunda divisão, 2 e 1 na terceira e, 2 e 0 na quarta.

O Algoritmo de Euclides (que aparece no sétimo livro dos Elementos) é usado para obter o mdc de dois números inteiros. Se considerarmos p e q como estes inteiros, o algoritmo pode descrito pelas equações

$$p = a_0 q + r_0, \quad 0 < r_0 < q,$$

$$q = a_1 r_0 + r_1, \quad 0 < r_1 < r_0,$$

$$r_0 = a_2 r_1 + r_2, \quad 0 < r_2 < r_1,$$
...

$$r_{n-3} = a_{n-1}r_{n-2} + r_{n-1}, \quad 0 < r_{n-1} < r_{n-2},$$

 $r_{n-2} = a_n r_{n-1}, \quad 0 = r_n,$

e afirma que r_{n-1} é o mdc de p e q.

Para mostrar que este último resto não nulo realmente é o mdc de p e q, precisamos verificar se ele satisfaz às duas condições a seguir:

- (a) o mdc divide ambos os inteiros $p \in q$;
- (b) qualquer divisor comum de p e de q divide o mdc.

Além disso, precisamos observar que dados r, s e t inteiros tais que r=s+t, então qualquer inteiro k que divide r e s deve dividir t. Se k divide r então $r=km_1$ onde m_1 é um inteiro. Se k divide s então $s=km_2$ onde m_2 é um inteiro. Visto que r-s=t, temos

$$r - s = km_1 - km_2 = k(m_1 - m_2) = t$$

de modo que k divide t. Também, se qualquer k divide s e t então k divide r.

Agora vamos analisar a situação de r_{n-1} . A equação

$$r_{n-2} = a_n r_{n-1},$$

mostra que r_{n-1} divide r_{n-2} . A equação imediatamente acima, ou seja,

$$r_{n-3} = a_{n-1}r_{n-2} + r_{n-1}$$

mostra que r_{n-1} divide r_{n-3} , já que ele divide r_{n-2} e r_{n-1} . Do mesmo modo, da equação

$$r_{n-4} = a_{n-2}r_{n-3} + r_{n-2},$$

vemos que r_{n-1} divide r_{n-4} , visto que ele divide r_{n-2} e r_{n-3} . Assim, trabalhando de equação em equação, descobrimos que r_{n-1} divide r_2 e r_3 e assim, divide também r_1 .

Dividindo r_2 e r_1 , ele divide r_0 ; dividindo r_0 e r_1 , ele divide q; e finalmente, dividindo q e r_0 , r_1 divide p. Por isso, a condição (a) é satisfeita, pois r_1 divide p e q.

Em seguida, mostramos que se um número c é divisor comum de p e q então c divide r_0 , por causa da primeira equação. Se c divide q e r_0 então c divide r_1 na segunda equação. Se c divide r_1 e r_0 então, na terceira equação, c divide r_2 . E assim, até alcançar a penúltima equação onde se c divide r_{n-3} e r_{n-2} então c divide r_{n-1} . Desta forma, provamos que r_{n-1} é o mdc de p e q.

O algoritmo ainda pode ter sua equações sintetizadas da forma:

onde a primeira linha fornece os quocientes parciais da expansão em frações contínuas do número racional representado por $\frac{p}{a}$.

Posto isso, podemos enunciar o seguinte resultado:

Teorema. Toda fração contínua finita representa um número racional. Reciprocamente, todo número racional é representado por uma fração contínua finita.

Além disso, a sintetização do processo facilita ainda mais a obtenção da expansão em fração contínua.

Por exemplo, no caso do número $\frac{125}{37}$, temos no processo utilizado no início do seção 7.1,

$$\frac{125}{37} = 3 + \frac{14}{37} = 3 + \frac{1}{\frac{37}{14}} = 3 + \frac{1}{2 + \frac{9}{14}} = 3 + \frac{1}{2 + \frac{1}{\frac{14}{9}}} = 3 + \frac{1}{2 + \frac{1}{1 + \frac{5}{9}}} = 3 + \frac{1}{2 + \frac{1}{1 + \frac{1}{\frac{9}{5}}}} = 3 + \frac{1}{2 + \frac{1}{1 + \frac{1}{\frac{9}}}} = 3 + \frac{1}{2 + \frac{1}{1 + \frac{1}{\frac{9}{5}}}} = 3 + \frac{1}{2 + \frac{1}{1 + \frac{1}{\frac{9}}}} = 3 + \frac{1}{2 + \frac{1}{1 + \frac{1}{1 + \frac{1}{\frac{9}}}}} = 3 + \frac{1}{2 + \frac{1}{1 +$$

$$= 3 + \frac{1}{2 + \frac{1}{1 + \frac{1}{1 + \frac{4}{5}}}} = 3 + \frac{1}{2 + \frac{1}{1 + \frac{1}{1 + \frac{1}{5}}}} = 3 + \frac{1}{2 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{4}}}}} = [3; 2, 1, 1, 1, 4]$$

e agora podemos fazer,

que também nos dá, através da primeira linha, $\frac{125}{37} = [3; 2, 1, 1, 1, 4].$

Considerando que o último termo a_n pode ser substituído por $a_n - 1 + \frac{1}{1}$, notamos que um número racional x que é representado por $[a_0; a_1, a_2, ..., a_n]$ também pode ser representado por $[a_0; a_1, a_2, ..., a_n - 1, 1]$. Isto faz com que $\frac{125}{37}$ possa ter [3; 2, 1, 1, 1, 3, 1], que corresponde a

$$3 + \frac{1}{2 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{3 + \frac{1}{1}}}}}},$$

também como representação.

Assim, podemos enunciar o seguinte teorema:

Teorema. Todo número racional é representado por uma fração contínua finita (simples) de apenas duas formas; uma com um número par de termos, e a outra, com um número ímpar. Uma com último termo igual a 1, e a outra, com esse termo maior do que 1.

Lembramos que este tipo de fenômeno também ocorre na representação decimal, como por exemplo, no caso do número 5 que pode ser escrito como 5,0000... ou 4,9999... .

Atividade 4: Determine a expansão em frações contínuas dos seguintes números racionais:

a)
$$\frac{51}{22}$$
 b) $\frac{67}{29}$ c) $\frac{35}{97}$

Atividade 5: Expresse os números racionais a seguir sob a forma de frações contínuas, com auxílio do algoritmo de Euclides:

a)
$$[2; 1, 4]$$
 b) $[3; 2; 12]$ c) $[1; 15, 7, 3]$

7.3 A expansão dos números irracionais

E como seria a expansão em frações contínuas dos números irracionais? De certo que não é finita, pois não podemos representar um número irracional como um número racional. Apenas podemos utilizar um racional para dar um valor aproximado de um irracional dado.

Por isso, vamos utilizar uma forma um pouco diferente de obter os quocientes parciais da expansão em frações contínuas dos irracionais $\sqrt{2}$ e $\sqrt{3}$.

- a) $\sqrt{2}$
- Como $1 < \sqrt{2} < 2$ temos $\sqrt{2} = 1 + n,$ sendo 0 < n < 1,e $a_0 = 1.$
- Fazendo $n = \frac{1}{x}$ teremos x > 1 e assim,

$$\sqrt{2} = 1 + \frac{1}{x} \Longrightarrow x = \frac{1}{\sqrt{2} - 1} = \frac{(\sqrt{2} + 1)}{(\sqrt{2} - 1)(\sqrt{2} + 1)} = \frac{\sqrt{2} + 1}{2 - 1} = \sqrt{2} + 1$$

- Como 2 < x < 3 temos $x = 2 + \frac{1}{y}$, sendo y > 1, e $a_1 = 2$.
- -Assim,

$$x = 2 + \frac{1}{y} \Longrightarrow y = \frac{1}{x - 2} = \frac{1}{\sqrt{2} - 1} = \sqrt{2} + 1 = x \Longrightarrow 2 < y < 3 \Longrightarrow a_2 = 2 = a_1$$

É fácil observar que a expansão de $\sqrt{2}$ apresenta um comportamento notável para os quocientes parciais: $a_2 = a_3 = a_4 = a_5 = \dots = a_1 = 2$. Por isso, podemos escrever:

$$\sqrt{2}=[1;2,2,2,\ldots]=\left[1;\overline{2}\right]$$

onde a barra vertical sobre o 2 indica repetição da mesma forma como na representação decimal das dízimas periódicas.

- b) $\sqrt{3}$
- Como $1 < \sqrt{3} < 2$ temos $\sqrt{3} = 1 + \frac{1}{x}$, com x > 1, e $a_0 = 1$.
- -Assim,

$$\sqrt{3} = 1 + \frac{1}{x} \Longrightarrow x = \frac{1}{\sqrt{3} - 1} = \frac{\sqrt{3} + 1}{2} \Longrightarrow 1 < x < \frac{3}{2} \Longrightarrow a_1 = 1$$

$$x = 1 + \frac{1}{y} \Longrightarrow y = \frac{1}{x - 1} = \frac{2}{\sqrt{3} - 1} = \sqrt{3} + 1 \Longrightarrow 2 < y < 3 \Longrightarrow a_2 = 2$$

$$y = 2 + \frac{1}{z} \Longrightarrow z = \frac{1}{y - 2} = \frac{1}{\sqrt{3} - 1} = x \Longrightarrow a_3 = a_1$$

$$z = 1 + \frac{1}{w} \Longrightarrow w = \frac{1}{z - 1} = \frac{1}{x - 1} = y \Longrightarrow a_4 = a_2$$

No cálculo dos quocientes parciais para a expansão de $\sqrt{3}$, encontramos $a_3=a_5=a_7=\ldots=a_1$ e $a_4=a_6=a_8=\ldots=a_2$. Assim,

$$\sqrt{3} = [1; 1, 2, 1, 2, \dots] = [1; \overline{1, 2}]$$

As expansões em frações contínuas de $\sqrt{2}$ e $\sqrt{3}$ apresentam uma característica infinita e periódica, o que não ocorreu com os exemplos envolvendo números racionais.

Atividade 6: Expresse os números irracionais a seguir sob a forma de frações contínuas:

a)
$$\sqrt{5}$$
 b) $\sqrt{7}$ c) $\sqrt{8}$ d) $\sqrt{10}$

Atividade 7: Determine a expansão em frações contínuas dos seguintes números irracionais:

a)
$$\sqrt{2} - 1$$
 b) $\frac{1}{\sqrt{2}}$ c) $2\sqrt{2}$ d) $\frac{\sqrt{3}}{3}$

Podemos também com o auxílio de uma calculadora, obter os valores dos quocientes parcias. Para isso, vamos retomar o processo de expansão de $\sqrt{2}$:

- Em primeiro lugar, definimos a parte inteira de $\sqrt{2}$, que é igual a 1 (para facilitar, vamos utilizar a notação $\lfloor x \rfloor$ para representaar a parte inteira de x). Com isso, $a_0 = \lfloor \sqrt{2} \rfloor = 1$.
- Depois, chamamos de n a parte fracionária de $\sqrt{2}$ que corresponde a $\sqrt{2} \lfloor \sqrt{2} \rfloor$. Este valor tev seu inverso calculado e denominado de x. E aí, $a_1 = \lfloor x \rfloor = 2$.
- Depois, com o inverso de $x \lfloor x \rfloor$ sendo chamado de y, temos $a_2 = \lfloor y \rfloor = 2$.

E como surge daí o comportamento periódico da expansão de $\sqrt{2}$, escrevemos $\sqrt{2}=[1;2,2,2,\ldots].$

Então, com o auxílio de uma calculadora:

Atividade 8: Expresse os números irracionais a seguir sob a forma de frações contínuas:

- a) $\sqrt{3}$ b) $\sqrt{6}$ c) $\sqrt{12}$ d) $\sqrt{17}$

Atividade 9: Determine a expansão em frações contínuas dos seguintes números irracionais:

- a) π b) e(base dos logaritmos neperianos)
- c) ϕ (número de ouro)
- d) $\log 2$

Não podemos representar (por definição) um número irracional com um racional, mas podemos dar aproximações racionais tão boas quanto desejarmos. Vamos comparar aproximações decimais com as aproximações obtidas via expansão em frações contínuas. Porém, antes vamos definir convergentes.

Na seção 7.1, vimos que todo número racional $\frac{p}{q}$ pode ser expandido em uma fração contínua finita

$$\frac{p}{q} = [a_0; a_1, a_2, ..., a_n],$$

onde a_0 é um inteiro qualquer e $a_1, a_2, ..., a_n$ são inteiros positivos. Esses números, na seção 7.1, foram chamados de quocientes parciais. Com eles podemos formar as seguintes frações:

$$c_0 = \frac{a_0}{1};$$

$$c_1 = a_0 + \frac{1}{a_1};$$

$$c_2 = a_0 + \frac{1}{a_1 + \frac{1}{a_2}};$$

e assim sucessivamente, interrompendo a sequência de a_i 's.

Estas frações são chamadas, respectivamente, de primeiro, segundo, terceiro, ... convergentes da fração contínua que representa $\frac{p}{a}$.

O convergente de ordem n+1,

$$c_n = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \dots + \frac{1}{a_n}}}$$

é igual à própria fração contínua.

Pro exemplo, para expansão em fração contínua de $\frac{31}{12}$, temos

$$\frac{31}{12} = [2; 1, 1, 2, 2],$$

isto é, $a_0 = 2$, $a_1 = 1$, $a_2 = 1$, $a_3 = 2$ e $a_4 = 2$. Então, os convergentes de $\frac{31}{12}$ são:

$$c_0 = \frac{2}{1} = 2$$

$$c_1 = 2 + \frac{1}{1} = 3$$

$$c_2 = 2 + \frac{1}{1 + \frac{1}{1}} = \frac{5}{2}$$

$$c_3 = 2 + \frac{1}{1 + \frac{1}{1 + \frac{1}{2}}} = \frac{13}{5}$$

$$c_4 = 2 + \frac{1}{1 + \frac{1}{1 + \frac{1}{2}}} = \frac{31}{12}$$

Como a expansão de um número racional é finita, o último convergente é o próprio número. No caso de um número irracional, não obtemos o número propriamente dito, mas valores cada vez mais próximos dele, a medida que tomamos convergentes de ordens superiores.

Vamos agora observar, por exemplo, o comportamento dos 5 primeiros convergentes oriundos da representação de $\sqrt{2}$. No início desta seção, vimos que $\sqrt{2} = [1; 2, 2, 2, ...]$. Portanto,

$$c_0 = 1$$

$$c_1 = 1 + \frac{1}{2} = \frac{3}{2} = 1, 5$$

$$c_2 = 1 + \frac{1}{2 + \frac{1}{2}} = \frac{7}{5} = 1, 4$$

$$c_3 = 1 + \frac{1}{2 + \frac{1}{2}} = \frac{17}{12} = 1, 4166667$$

$$c_4 = 1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2}}}} = \frac{41}{29} = 1,4137931$$

Se compararmos estes valores com a aproximação decimal de $\sqrt{2}\cong 1,4142136,$ podemos notar que:

- conforme a ordem do convergente aumenta, o seu valor se torna mais próximo do valor do número que foi expandido na fração contínua.
- para estes 5 convergentes temos

$$c_0 < c_2 < c_4 < \sqrt{2} < c_3 < c_1$$

Atividade 10: Calcule os cinco primeiros convergentes de:

a)
$$\sqrt{3}$$
 b) $\sqrt{5}$ c) π d) e

Retomando os cinco convergentes de $\sqrt{2}$, podemos analisar o erro relativo, comparando com aproximações decimais. Observe a tabela abaixo:

i	c_i	$\left \sqrt{2}-c_i\right $
0	1	0,4142136
1	$1,5 = \frac{3}{2}$	0,1142136
2	$1, 4 = \frac{7}{5}$	0,0142136
3	$1,4166667 = \frac{17}{12}$	0,0024531
4	$1,4137931 = \frac{41}{29}$	0,0004205

Observando o quinto convergente da expansão de $\sqrt{2}$ podemos verificar que

$$\left| \sqrt{2} - \frac{41}{29} \right| < \frac{1}{2000} < \left| \sqrt{2} - \frac{141}{100} \right|$$

e isto nos diz que $\frac{41}{29}$ é uma aproximação para $\sqrt{2}$ melhor do que $\frac{141}{100}$, considerando o tamanho do denominador envolvido.

Se tomarmos o próximo convergente (o sexto), conseguiremos uma aproximação melhor ainda:

 $\left|\sqrt{2} - \frac{99}{70}\right| < \frac{1}{13850} < \left|\sqrt{2} - \frac{1414}{1000}\right|,$

e isso, sem considerar um denominador muito maior do que o anterior (entre os convergentes).

Este fato, expõe uma característica poderosa da expansão em frações contínuas: o de fornecer as melhores aproximações racionais (com seus convergentes) para um número irracional dado.

Atividade 11: Para cada um dos números irracionais abaixo, determine o convergente de menor ordem, para que o erro relativo seja menor do que $\frac{1}{1000}$.

a) $\sqrt{6}$ b) $\sqrt{10}$ c) ϕ d) $\log 3$

Atividade 12: Repita a atividade anterior para que o erro relativo seja menor do que $\frac{1}{50000}$.

a) $\sqrt{6}$ b) $\sqrt{10}$ c) ϕ d) $\log 3$

7.4 Irracionais algébricos \times Irracionais transcendentes

No final da seção anterior trabalhamos com números irracionais que apresentaram expansões em frações contínuas com comportamento diferente. Por um lado, alguns irracionais cuja expansão é periódica; por outro, expansão infinita não periódica. Os primeiros são denominados **algébricos**, enquanto os outros são chamados de **transcendentes**. Mas o que vem a ser um número irracional algébrico? Vejamos.

Suponha que

$$f(x) = a_0 + a_1 x + \dots + a_n x^n$$

é um polinômio de grau n com **coeficientes inteiros** $a_0, a_1, ..., a_n$. Então, uma raiz α deste polinômio é dita ser algébrica. Uma vez que todo número racional $\alpha = \frac{a}{b}$ pode ser definido como a raiz de uma equação do primeiro grau bx - a = 0, o conceito de

número algébrico é claramente uma generalização do conceito de número racional. Se um dado número algébrico satisfaz uma equação f(x) = 0 de grau n e não satisfaz nenhuma equação de menor grau (com coeficientes inteiros), ele é chamado de número algébrico de grau n. Em particular, os números racionais podem ser definidos como números algébricos de primeiro grau. O número $\sqrt{2}$, sendo uma raiz do polinômio x^2-2 , é um número algébrico do 2º grau ou, como dizemos, um irracional quadrático. Irracionais cúbicos, do 4º grau ou de graus superiores são definidos de forma análoga. Todo número não-algébrico é dito transcendente. Exemplos de números transcendentes são $e \in \pi$.

Com isso, podemos recompor um número irracional quadrático dada a sua expansão em frações contínuas. Por exemplo, vamos considerar o número x cuja expansão é $[4; \overline{1,8}]$. Pelo que já foi dito antes:

$$x = 4 + \frac{1}{1 + \frac{1}{8 + \frac{1}{1 + \frac{1}{8 + \dots}}}}$$

Mas, se tomarmos o número x + 4, temos:

$$x + 4 = 8 + \frac{1}{1 + \frac{1}{8 + \frac{1}{1 + \frac{1}{8 + \dots}}}}$$

E assim, podemos reescrever esta igualdade:

$$x + 4 = 8 + \frac{1}{1 + \frac{1}{x + 4}}$$

Arrumando esta equação encontramos $x^2-24=0$ cuja raiz positiva é $\sqrt{24}$.

Portanto, $\sqrt{24} = [4; \overline{1,8}].$

Atividade 13: Encontre o número irracional que tem expansão em frações contínuas:

- a) $[2; \overline{1}]$ b) $[8; \overline{1, 16}]$ c) $[9; \overline{9, 18}]$ d) $[1; 3, \overline{1, 2}]$

7.5 A equação de Pell

A equação $x^2 - dy^2 = 1$, onde d é um número inteiro positivo, é geralmente conhecida como **equação de Pell**.

Se d é um quadrado perfeito, teríamos algum k inteiro tal que $d=k^2$ e assim,

$$x^{2} - dy^{2} = x^{2} - k^{2}y^{2} = (x + ky)(x - ky) = 1$$

Isto implica em $x + ky = x - ky = \pm 1$.

Assim, por simples inspeção, as únicas soluções desta equação acabam sendo $x=\pm 1$ e y=0.

Desejamos analisar as soluções da equação de Pell quando d não é quadrado perfeito, e portanto \sqrt{d} é um número irracional. A expansão em frações contínuas para \sqrt{d} fornece todas as ferramentas que precisamos para resolver a equação de Pell $x^2 - dy^2 = 1$.

Vamos encontrar uma solução particular da equação $x^2 - 11y^2 = -1$. Aqui d = 11, e a expansão em fração contínua de $\sqrt{11}$ é dada por

$$\sqrt{11} - 3 = \frac{(\sqrt{11} - 3)(\sqrt{11} + 3)}{\sqrt{11} + 3} = \frac{2}{\sqrt{11} + 3} = \frac{1}{\frac{\sqrt{11} + 3}{2}}$$

$$\sqrt{11} - 3 = \frac{1}{\frac{6 + \sqrt{11} - 3}{2}} = \frac{1}{3 + \frac{\sqrt{11} - 3}{2}} = \frac{1}{3 + \frac{1}{\sqrt{11} + 3}}$$

$$\sqrt{11} - 3 = \frac{1}{3 + \frac{1}{6 + \sqrt{11} - 3}} = \frac{1}{3 + \frac{1}{6 + \frac{1}{\sqrt{11} - 3}}}$$

$$\sqrt{11} = 3 + \frac{1}{3 + \frac{1}{6 + \frac{1}{3 + \frac{1}{6 + \sqrt{11} - 3}}}}$$

isto é, $\sqrt{11}=[3;3,6,3,6,\ldots]=\left[3;\overline{3,6}\right]=\left[a_0;\overline{a_1,2a_0}\right].$ que mostra que $a_{n-1}=a_1$, de modo que n=1, número ímpar. O cálculo mostra que

$$c_1 = \frac{10}{3}$$
, de modo que $x_1 = p_1 = 10$ e $y_1 = q_1 = 3$, e

$$x_1^2 - 11y_1^2 = 10^2 - 11 \cdot 3^2 = 100 - 99 = 1;$$

portanto, $x_1 = 10$ e $y_1 = 3$ é solução particular da equação dada.

Esta também é a menor solução positiva. Para obter a próxima precisamos observar que a expansão de $\sqrt{11}$ tem período com dois termos. Por isso, a solução desejada está relacionada com o convergente c_3 . Vamos verificar esta afirmação.

$$c_3 = 3 + \frac{1}{3 + \frac{1}{6 + \frac{1}{3}}} = 3 + \frac{1}{3 + \frac{1}{\frac{19}{3}}} = 3 + \frac{1}{3 + \frac{3}{19}} = 3 + \frac{1}{\frac{60}{19}} = 3 + \frac{199}{60} = \frac{199}{60}$$

de modo que $x_2=199$ e $y_2=60$, e

$$x_2^2 - 11y_2^2 = 199^2 - 11 \cdot 60^2 = 39601 - 39600 = 1$$

Note que foi necessário "pular" dois convergentes, pois

$$c_2 = 3 + \frac{1}{3 + \frac{1}{6}} = 3 + \frac{1}{\frac{19}{6}} = 3 + \frac{6}{19} = \frac{63}{19}$$

$$e 63^2 - 11 \cdot 19^2 = 3969 - 3971 = -2.$$

Atividade 14: Encontre a menor solução positiva de:

a)
$$x^2 - 2y^2 = 1$$
 b) $x^2 - 5y^2 = 1$ c) $x^2 - 18y^2 = 1$ d) $x^2 - 29y^2 = 1$

Atividade 15: Encontre as três menores soluções positivas de $x^2 - 10y^2 = 1$.

Capítulo 8

Conclusão

Quando do primeiro contato com a representação em frações contínuas, a utilização de números racionais torna o processo mais amigável, mesmo quando este se estende por algumas etapas, pois os termos utilizados tendem a diminuir de valor. Porém, é preciso tornar clara a forma como são obtidos os quocientes parciais, para que a migração para os números irracionais seja mais suave. No caso destes últimos, é bastante ilustrativo o uso de exemplos de tipos distintos, principalmente quando surgem expansões periódicas e expansões não periódicas.

Os primeiros exemplos de expansão para números racionais trazem à tona a primeira característica importante das frações contínuas: "Toda fração contínua finita representa um número racional, e reciprocamente, todo número racional é representado por uma fração contínua finita".

A íntima ligação existente entre a expansão em frações contínuas com duas ideias básicas da Aritmética, a divisão euclidiana e o algoritmo de Euclides para o cálculo do máximo divisor comum de dois números, torna a desmonstração desse fato bem natural, visto que a primeira (divisão euclidiana) faz com que a segunda (algoritmo de Euclides) seja limitada em suas etapas.

A utilização do algoritmo ainda traz uma simplificação no processo de obtenção dos quocientes parciais. Foi visto ainda, que é possível ter duas formas de representar números racionais, assim como acontece na representação decimal.

Através dos quocientes parciais da expansão em frações contínuas formamos os chamados convergentes. Para um número racional, eles não trazem nenhum resultado importante, apenas realçam o fato de que o último convergente é o próprio número racional. Por outro lado, para um número irracional, os convergentes (com a sua característica de convergência e sucessão) trazem aproximações surpreendentemente boas, a medida que avançamos nas ordens superiores deles.

A segunda característica marcante da expansão em frações contínuas, "toda fração

contínua infinita representa um número irracional", também é comprovada com o auxílio dos convergentes.

E o resultado mais importante para a aproximação de números irracionais através de números racionais, é que os convergentes da expansão em frações contínuas fornecem erros relativos (isto é, boas aproximações) utilizando denominadores relativamente pequenos se comparados com equivalentes provenientes de aproximações decimais. Isto foi verificado para os números $\sqrt{2}$ e π , mas facilmente observado em outros casos.

Ainda encontramos uma outra utilidade para a expansão em frações contínuas de números irracionais: a obtenção das soluções de um tipo de equação, denominada equação de Pell.

Antes porém, foi possível através da análise da expansão caracterizar irracionais algébricos e irracionais transcendentes, pois "toda fração contínua periódica representa um número irracional quadrático (algébrico de grau 2)".

Para obter sucesso no processo de encontrar soluções para a equação de Pell fizemos uso de um irracional quadrático do tipo reduzido, cuja expansão em frações contínuas apresenta um comportamento puramente periódico, associado ao coeficiente da equação. A menor solução positiva é obtida através dos convergentes da expansão. As outras soluções podem ser obtidas fazendo composições com a primeira solução.

O processo para se obter cada um dos quocientes parciais na representação em frações contínuas que consiste em tomar a parte inteira do número e, invertendo a parte fracionária, e novamente tomar a parte inteira e assim sucessivamente, revela a forte ligação que essa forma de representação tem com a transformação de Gauss, em particular para números entre 0 e 1.

A sequência de quocientes parciais forma um conjunto (órbita) que também gera uma distinção as classes de números tal como o aspecto da sua expansão: os racionais apresentam órbita que acaba em zero; os irracionais quadráticos possuem uma órbita com ciclo bem definido e e os irracionais algébricos de grau superior a 2 e os irracionais transcendentes tem órbita que "percorre" o intervalo (0,1), sem contudo estabelecer um ciclo.

No final do nosso texto, propomos uma série de atividades a serem realizadas com alunos que já estejam no Ensino Médio. Acreditamos que pela maior bagagem desses alunos, em particular com uma boa noção de operações com radicais e equações do segundo grau, o trabalho será mais proveitoso.

Neste roteiro, iniciamos com a expansão de números racionais de forma bem rudimentar para que a representação acontecesse de maneira bem amigável. Números racionais negativos também foram contemplados nesta introdução, bem como a possibilidade de reversão do processo. Esta última etapa, também já era preparatória para a utilização

das frações contínuas com os números irracionais.

Na seção seguinte, mostramos a ligação da expansão com o algoritmo de Euclides para o cálculo do mdc; e o quanto este garante a finitude da representação de números racionais e simplifica o seu processo.

Ao passar para as atividades com números irracionais, visamos mostrar que a expansão destes é infinita, periódica ou não. Neste ponto, incentivamos os alunos a utilizarem uma calculadora científica (simples) para obterem os quocientes parciais. Note que o uso da calculadora deve acontecer depois que o aluno já tiver percebido quais são informações desejadas e quais as operações envolvidas.

A análise do erro cometido na aproximação de irracionais por racionais, também é alvo de atividades na terceira parte do roteiro. A comparação com as aproximações decimais (de uso mais comum) realça a característica de apresentar aproximações melhores que a expansão em frações contínuas possui.

Fizemos uma breve introdução na diferenciação entre números algébricos e números transcendentes. Este conteúdo é praticamente inacessível aos alunos do Ensino Médio, mas que pode encontrar nas frações contínuas um bom suporte.

Terminamos, aproveitando uma característica da expansão de irracionais quadráticos: a infinitude aliada à periodicidade. Essa característica serve como ferramenta para apresentar soluções para a equação de Pell.

Acreditamos que com essas atividades, um aluno comum do Ensino Médio conseguirá conhecer a representação em frações contínuas em seus aspectos básicos e suas principais potencialidades.

A utilização de frações contínuas na representação de números reais amplia as possibilidades de conceituação destes números, com uma melhor distinção entre racionais e irracionais, proporciona uma configuração mais exata de suas operações, faz ligação com tópicos importantes da Aritmética, traz para ganhos consideráveis para a aproximação de irracionais com racionais e ainda pode ser utilizada na resolução de equações não triviais.

Bibliografia

ANDRADE, Eliana X. L.; BRACCIALI, Cleonice F. Frações Contínuas: Propriedades e Aplicações. Notas em Matemática Aplicada. v. 20. São Carlos: SBMAC, 2012. 118 p.

CARNEIRO, José Paulo Q. Um Processo Finito para Raiz Quadrada. Revista do Professor de Matemática. número 34.

DÍAZ, Lorenzo J.; JORGE, Danielle de Resende. **Uma Introdução aos Sistemas Dinâmicos via Frações Contínuas**. 26º Colóquio Brasileiro de Matemática. Rio de Janeiro: IMPA, 2007.

HARDY, G. H.; WRIGHT, E. M. An Introduction to the Theory of Numbers. 4 ed. Londres: Oxford University, 1975. 421 p.

KHINCHIN, A. Ya. Continued Fractions. Nova Iorque: Dover, 1997. 106 p.

MARQUES, Diego; **Teoria dos Números Transcendentes**. Rio de Janeiro: SBM, 2013.

MARTINEZ, Fábio Brochero; MOREIRA, Carlos Gustavo; SALDANHA, Nicolau; TENGAN, Eduardo. **Teoria dos números**: um passeio com primos e outros números familiares pelo mundo inteiro. 3 ed. Rio de Janeiro: IMPA, 2013.

MOREIRA, Carlos Gustavo T. de A. Frações Contínuas, Representações de Números e Aproximações Diofantinas. 1º Colóquio da Região Sudeste. São João del-Rei, 2011.

MOREIRA, Carlos Gustavo T. de A. Propriedades estatísticas de frações contínuas e aproximações diofantinas: o teorema de Khintchine. Revista Matemática Universitária número 29, pp. 125-137. Rio de Janeiro, 1998.

NIVEN, Ivan; ZUCKERMAN, Herbert S.; MONTGOMERY, Hugh L. An Introduction to the Theory of Numbers. 5 ed. Nova Iorque: Wiley, 1991.

POMMER, Wagner Marcelo. A construção de significados dos números Irracionais no ensino básico: Uma proposta de abordagem envolvendo os eixos constituintes dos Números Reais. Tese (Doutorado - Programa de Pós-Graduação em Educação. Área de concentração: Ensino de Ciências e Matemática) - Faculdade de Educação da Universidade de São Paulo. 235 p. São Paulo, 2012.

POMMER, Wagner Marcelo. O uso das Frações Contínuas como tema articulador no Ensino Médio. Revista Eletrônica de Matemática. número 3. 2013.

OLDS, Carl Douglas. **Continued Fractions**. New Mathematical Library número 9. Nova Iorque: Random, 1963. 162 p.

SANTOS, José Plínio de Oliveira. **Introdução à teoria dos números**. 3 ed. Rio de Janeiro: IMPA, 2012.

TAVARES, Cláudia S.; CARVALHO, Sônia P. de; KAMPHORST, Sylvie O. Caos na base 2. Oficina na 1ª Bienal da Sociedade Brasileira de Matemática. Belo Horizonte, 2002.