MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL

Detalhes - Dissertação do PROFMAT


Aluno: THIAGO TRINDADE PIMENTEL

USP - Universidade de São Paulo - São Carlos - SP

Dissertação

Título
Construção dos números reais via cortes de Dedekind
Resumo
O objetivo desta dissertação é apresentar a construção dos números reais a partir de cortes de Dedekind. Para isso, vamos estudar os números naturais, os números inteiros, os números racionais e as propriedades envolvidas. Então, a partir dos números racionais, iremos construir o corpo dos números reais e estabelecer suas propriedades. Um corte de Dedekind, assim nomeado em homenagem ao matemático alemão Richard Dedekind, é uma partição dos números racionais em dois conjuntos não vazios A e B em que cada elemento de A é menor do que todos os elementos de B e A não contém um elemento máximo. Se B contiver um elemento mínimo, então o corte representará este elemento mínimo, que é um número racional. Se B não contiver um elemento mínimo, então o corte definirá um único número irracional, que “preenche o espaço” entre A e B. Desta forma, pode-se construir o conjunto dos números reais a partir dos racionais e estabelecer suas propriedades. Esta dissertação proporcionará aos estudantes do Ensino Médio, interessados em Matemática, uma formação sólida em um de seus pilares, que é o conjunto dos números reais e suas operações algébricas e propriedades. Isso será muito importante para a formação destes alunos e sua atuação educacional.
[Download TCC]