MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL

Detalhes - Dissertação do PROFMAT


Aluno: DOUGLAS OLIVEIRA DE LIMA

UnB - Universidade de Brasília - Brasília - DF

Dissertação

Título
51 desafios geométricos
Resumo
A transformação circular, conhecida pelo nome de inversão circular é um assunto pouco conhecido por muitos professores que trabalham no dia a dia no ensino básico, ela é muito voltada para a resolução de problemas olímpicos e na sua grande maioria difíceis. Em geral é uma técnica avançada que é utilizada em larga escala nas olimpíadas de matemática. As competições olímpicas, na busca de novos talentos, têm a característica de ser uma competição intelectual, utilizando para isto problemas desafiadores que exigem do aluno a sua capacidade criativa na resolução dos mesmos, e a inversão é uma importante ferramenta que auxilia nesta tarefa. Em geral, se não houver uma preparação específica, deparamo-nos com várias barreiras que estão escondidas nas teorias. Este fato pode ser comum tanto ao discente quanto ao docente e, principalmente, nas fases finais das olimpíadas. Um sentimento de frustração nos abrange quando não sabemos de que forma devemos enfrentar tais obstáculos. Desta forma, o fim deste trabalho é diminuir a distância que ocorre com matemática nas escolas básicas e as competições olímpicas. A dinâmica dessa proposta foi baseada em experiências no preparo de alunos para as olimpíadas e de alguma forma tentando mostrar como podemos crescer teoricamente através dos problemas envolvidos. Por isso, os problemas aqui possuem a resolução detalhada, alguns autorais e outros com a devida referência. Buscamos através da resolução de alguns problemas escolhidos traçar algumas estratégias interessantes para a resolução dos mesmos utilizando pouca teoria. Em tais resoluções fazemos comentários dessas estratégias e de possíveis dificuldades que o aluno e/ou professor possam se deparar. Esta experiência indicou que há vários problemas que estimulam os jovens a gostar de matemática e se interessar pelos problemas olímpicos, bastando para isso, desenvolver o raciocínio dele através de assuntos que possuem facilidades na aprendizagem.
[Download TCC]