MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL

Detalhes - Dissertação do PROFMAT


Aluno: JHONES CARVALHO COELHO

UFAM - Universidade Federal do Amazonas - Manaus - AM

Dissertação

Título
O ESTUDO DAS ÁRVORES DE STEINER NO PLANO EUCLIDIANO E ALGUMAS APLICAÇÕES ATRAVÉS DO ALGORITMO DE MELZAK
Resumo
Dado um conjunto de pontos no plano, que denominamos terminais ou pontos regulares, prova-se que sempre existe uma árvore mínima que os conecta, chamado "árvore de Steiner". Os terminais podem representar centros de conexão para rotas, elementos de circuito elétrico, ou de redes diversas. Ou seja, o problema em questão é otimizar a comunicação entre os terminais, caso isto seja representado por uma árvore de menor comprimento possível. Nem sempre o "menor comprimento"representa a otimização. O Problema de Steiner possui variações, por exemplo, em que as arestas da árvore só podem seguir direções horizontal e vertical, como no caso de circuitos elétricos. Outra variação é quando cada ponto Steiner tem custo muitoalto, e pretende-se obter uma tal árvore com o menor número de tais pontos. Ela será "mínimo local"para comprimento, mas não necessariamente global. Um modelo físico e bastante simples para "árvore de Steiner"é que ela pode ser também realizada por películas de sabão, e por isso compartilham propriedades de Superfícies Mínimas. Como exemplo, considere uma solução de sabão. Ao mergulharmos e retirarmos duas placas paralelas ligadas por pinos, uma película irá conectá-los. Esta representa um grafo de comprimento mínimo que interliga os pinos. Como é sabido, as películas de sabão realizam as Superfícies Mínimas. Para visualizar uma "Árvore de Steiner", recorre-se a Algoritmos Numéricos e Programação Gráfica, os métodos baseiam-se principalmente na implementação dos algoritmos. Este presente trabalho está dividido em trêspartes: breve história dos problemas de otimização, em destaque o problema de Steiner; teoria sobre a Árvore Mínima ou Árvore de Steiner e o Algoritmo de Melzak; alguns exemplos de casos reais.
[Download TCC]