MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL

Detalhes - Dissertação do PROFMAT


Aluno: ISAAC NOBRE LIMA DA SILVA

UFC - Universidade Federal do Ceará - Fortaleza - CE

Dissertação

Título
A trombeta de Gabriel
Resumo
O infinito é um conceito que por muitas vezes desafia nossa intuição e nos faz cometer erros, pois temos a ideia que o infinito está necessariamente ligado a algo ilimitado. No Cálculo Diferencial e Integral, por exemplo, definimos integral definida f x dxba considerando uma função f contínua num intervalo fechado e limitado [a,b]. Porém, em algumas aplicações nos deparamos com casos em que o intervalo é infinito ou a função f tem uma descontinuidade infinita no intervalo. Nesses dois casos, temos uma integral imprópria. Indícios desse problema já foram observados, no século XVII, onde em 1641, o físico e matemático italiano Torricelli notou que uma área infinita, se submetida a uma rotação em torno de um eixo de seu plano, pode às vezes fornecer um sólido de revolução de volume finito. Algo infinito pode gerar algo finito?! Isso desencadeia uma controvérsia sobre a natureza do infinito e gera um verdadeiro paradoxo. Um desses fascinantes sólidos de revolução é a Trombeta de Gabriel ou de Torricelli que é gerado a partir de uma hipérbole equilátera e podemos enunciar como o Paradoxo do Pintor e a Trombeta de Gabriel : “Se uma área infinita, limitada pela hipérbole xy = 1, a reta x = 1 e o eixo das abscissas é girada em torno do eixo, o volume do sólido gerado com essa rotação é finito. Dado que tal área é infinita, seria necessária uma quantidade infinita de tinta para poder pintá-la, porém, bastaria uma quantidade finita de tinta para poder preenchê-la, uma vez que o volume é finito.” De modo intuitivo, poderíamos enchê-la de tinta, mas nem toda tinta do mundo poderia pintar sua superfície. Sem dúvida um exemplo contraintuitivo que envolve o infinito. De posse disso, o presente trabalho deseja apresentar através do Paradoxo do Pintor e a Trombeta de Gabriel uma abordagem para o ensino de integrais impróprias tanto para alunos do Ensino Superior, quanto para alunos do Ensino Médio que desejam aprofundar os seus estudos de Cálculo. Para isso, fazemos um resgate de conteúdos como comprimento de curva, área de superfície de revolução, volume de um sólido de revolução e hipérbole. Além disso, propomos uma discussão sobre a importância do Cálculo no Ensino Básico e o tal propalado “fracasso do ensino de Cálculo”.
[Download TCC]