MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL

Detalhes - Dissertação do PROFMAT


Aluno: EDUARDO DE MELO BELTRÃO

UFRPE - Universidade Federal Rural de Pernambuco - Recife - PE

Dissertação

Título
ACELERANDO A CONVERGÊNCIA DA SÉRIE DE TAYLOR DE FUNÇÕES ELEMENTARES: UM MÉTODO BASEADO EM FRAÇÕES CONTÍNUAS
Resumo
Às séries de Taylor de funções elementares são aplicados dois métodos algébricos que permitem convertê-las em frações contínuas. O método de Euler faz com que os convergentes dessa fração sejam exatamente iguais às somas parciais da série que a originou. Já os convergentes da fração contínua gerada pelo método das substituições sucessivas são aproximações racionais para a referida função. Um processo de contração é aplicado às frações contínuas provenientes desses métodos, o que resulta em novas frações contínuas, caracterizadas por convergirem mais rapidamente ao valor da função do que as próprias séries. Comparações grá?cas e numéricas entre a série de Taylor da função, as frações contínuas geradas pelos métodos e suas contrações são realizadas. Observa-se que os convergentes de ordem cinco da contração par das frações contínuas obtidas pelo método das substituições sucessivas resultam, em média, aproximações com erro na ordem de 10?8 do valor real das funções analisadas, índice que pode ser considerado muito bom quando comparado ao valor dos polinômios de Taylor de mesma ordem. Os métodos descritos possuem características que se complementam, o que atribui à contração de suas frações contínuas uma possível e e?ciente implementação algorítmica.
[Download TCC]