Detalhes - Dissertação do PROFMAT
Aluno: EDUARDO KOITI HIROTA
UFCAT - Universidade Federal de Catalão - Catalão - GO
Dissertação
Título
Técnicas de Perturbação Utilizada para Solução Numérica de Equações do 2º e 3º Graus
Resumo
Os fenômenos que ocorrem na natureza são essencialmente não lineares e a teoria de sistemas dinâmicos tem como objetivo obter um modelo matemático que represente melhor os sistemas físicos reais, então nada mais coerentes que a descrição ou análise desses fenômenos naturais usando modelos e técnicas não
lineares. Nesta dissertação, foi utilizada a técnica da expansão direta para o desenvolvimento de equações diferenciais de ordem dois para resolução de uma equação não linear e na determinação aproximada de raízes de equações algébricas de ordem maior ou igual a dois. Com esse intuito, mostrou-se,
inicialmente, o desenvolvimento de uma equação diferencial do movimento sujeito a um amortecimento não linear, que é representado pela equação de Duffing – Van der Pol. Geralmente, não é fácil obter uma solução analítica aproximada para esse
tipo de equação, porém, este estudo é feito com a finalidade de ilustrar a técnica empregada no trabalho, resolvendo um tipo de problema no qual essas técnicas são corriqueiramente utilizadas para obter uma solução. Visando a aplicabilidade no ensino básico, apresenta-se uma forma de se obter as raízes aproximadas de equações do segundo e terceiro graus usando a técnica da expansão direta para efeito de comparação uma vez que existem fórmulas resolutivas para isso, provou-se que é possível determinar as raízes de equações de ordem maior por meio da mesma técnica.
Palavras-chave:
[Download TCC]